業
 務
 年
 報

平成18年度実績

ごあいさつ

平成4年4月にハイテクプラザが新設され，旧工業試験場を改編統合して新 たな試験研究機関として船出してからすでに15年が経過しました。以来，本県の工業振興のため，研究開発，技術相談•移転，試験•機器の開放，人材育成を 4 本柱として，さまざまな技術支援活動に努めてまいりました。幸い，県内企業の皆様からご利用していただく機会も年々増加の傾向にあります。これ もひとえに，当所事業に対する関係各位の多大のご理解とご支援の賜物と，篤 くお礼申し上げます。
一方，当所に寄せられます技術支援要請の内容も，この間に大きく変化して きました。従来は，技能面でのいわゆる底上げや，自動化•省力化の推進等が大きなテーマでしたが，近年ではこれらに加えて，環境に配慮した技術開発，
I T の利活用，バイオ技術，微細加工技術など，複雑で多岐にわたる高度な技術が要求されるようになってきています。とくに，安価な海外製品の流入や商品寿命の短サイクル化により，県内製造業におかれましても新技術の獲得とそ れに基づく独自製品の開発が必須となってきております。

そこで，このような県内企業ニーズの変化に対応するため，窓口業務の効率化及び機器の整備拡充に努めるとともに，産学官連携の強化とそれによる研究開発の一層の推進に注力してまいりました。これらの中で，平成18年度にお きましては，平成16年に開始した大型プロジェクト「公募型新事業創出プロ ジェクト研究事業」及び「地域活性化共同研究開発事業」に一期目の区切りが つき，本事業で培われた技術シーズを元として，バイオ，食品，微細加工に関連するベンチャー企業が創出されるなど，多くの成果が得られたことが特記さ れます。

また，科研費や地域新生コンソーシアムなどの外部研究開発資金の獲得も増加し，研究開発に大きく弾みがついております。

一方で，依頼試験や技術相談も増加傾向にあります。たとえば技術相談件数 は平成 17 年度の 3 ， 181 件から平成 18 年度は 3 ， 897 件に大幅に増加 しました。

これらのことから，技術支援機関として当ハイテクプラザの果たすべき役割 がますます重要となってきているものと，その責務をあらためて強く感じてお ります。これからも，県内企業の発展に貢献すべく，職員一同全力で取り組ん でまいりますので，皆様方の変わらぬご支援，ご指導をお願いいたします。

平成19年8月
福島県ハイテクプラザ
所長 宮野 壯太郎

福島県ハイテクプラザ業務年報

平成18年度実績

目 次

1 福島県ハイテクプラザ組織 1
1－1 機構と業務 1
$1-2$ 職員の構成 2
2 平成18年度福島県ハイテクプラザ事業実施概要 5
2－1 企画情報事業 5
2－1－1 試験研究業務企画推進事業 5
2－1－2 情報提供事業 5
$2-1-3$ コンピュータネットワーク事業 5
2－2 研究開発事業 6
2－2－1 重点研究課題 6
2－2－2 一般研究課題 7
$2-2-3$ その他の研究課題 9
2－2－4 客員研究員事業 13
2－2－5 推進会議•研究開発指導等 14
$2-2-6$ グリーンインダストリー形成支援事業 15
2－3 指導事業 16
2－3－1 戦略的ものづくり技術移転推進事業 16
2－3－2 技術支援事業（企業訪問） 18
2－3－3 技術顧問設置事業 19
2－3－4 技術相談指導事業 20
2－4 普及事業 22
2－4－1 研究成果発表会 22
2－4－2 投稿論文 22
2－4－3 学会発表 23
$2-4-4$ その他の外部発表 24
2－4－5 展示会等 24
2－4－6 酵母頒布事業 25
$2-4-7$ 講師派遣事業 26
2－5 試験，機器開放事業 33
2－5－1 依頼試験実施事業 33
$2-5-2$ 施設の開放事業 35
$2-5-3$ 設備の開放事業 35
参考資料1 福島県ハイテクプラザ事業状況（平成16～18年度） 40
参考資料2 平成18年度福島県ハイテクプラザ利用状況（業種，項目，地方の別） 41
2－6 人材育成事業 42
2－6－1 技術指導員養成研修 42
2－6－2 その他の職員研修 42
$2-6-3$ 会議出席 48
2－6－4 研究会•研修会開催 53
2－6－5 研修生受入れ事業 54
2－7 所内見学•視察来場者（平成 $14 \sim 18$ 年度） 55
2－8 サイエンス教室開催事業（平成 $15 \sim 18$ 年度） 56
2－9 新聞記事•報道等 57
3 産業財産権 61
4 福島県ハイテクプラザ業務運営委員会 63
4－1 設置要領 63
4－2 委員 64
5 福島県ハイテクプラザ技術課題検討会議 65
5－1 設置要領 65
5－2 委員 66
6 福島県ハイテクプラザの概要 67
6－1 沿革 67
6－2 規模 69
6－3 設備•機器 70
6－3－1 平成 18年度購入主要設備機器 70
6－3－2 主要設備機器 71
7 福島県ハイテクプラザの位置（各技術支援センターを含む） 83

1 福島県ハイテクプラザ組織

1 福島県ハイテクプラザ組織

1－1 機構と業務

（業務担当）

区 分	職 名	氏 名	職 務 の内 容
［システム技術グルーフ $28 \text { 名 }$	研究員 $"$ 科長 主任研究員 $\prime \prime$ $\prime \prime$ $\prime \prime$ $\prime \prime$ 副主任研究員	安齋 弘樹 小野 裕道 高橋 淳 尾形 直秀 大内 繁男 高樋 昌 平山 和弘 濱尾 和秀 吉田 英一	微細加工技術の試験•研究 機械加工技術等の試験•研究 グループ業務の総括 電子応用技術，組込み技術の試験•研究 パワーエレクトロニクス技術の試験•研究 組込み技術，音響技術等の試験•研究 音響技術，ネットワーク（情報）技術等の試験•研究 ネットワーク（情報）技術，画像処理技術等の試験•研究組込み技術，画像処理技術等の試験•研究
〔福島技術 支援センター］ ［繊維•材料グループ］ $10 \text { 名 }$	所長主査 科長 専門研究員 ＂ 主任研究員 ＂ ＂ 専門員 主任技能員	菅原 康則 渡辺 義秋 冨田 道男 三浦 文明 野村 隆 長澤 浩 菊地 時雄 東瀬 慎 増子 弘文 佐々木ふさ子	支援センター業務の総括 庶務，会計事務 グループ業務の総括 ニット技術に関する試験•研究•技術支援 織物技術に関する試験•研究•技術支援 素材加工に関する試験•研究•技術支援 材料に関する試験•研究•技術支援 縫製技術に関する試験•研究•技術支援 金属等の強伸度試験，試料調整・マクロ観察，塩水噴霧試験 織物，ニット，縫製製品に関する依頼試験
〔会津若松技術支援センター］ ［食品技術グループ］ ［産業工芸グループ］ 18 名（兼務 1 名）	主任専門研究員 （兼）所長 主查 科長 専門研究員 主任研究員 \quad＂ \quad＂ \quad＂ 副主任研究員 研究員 研究員 科長 専門研究員 $\quad "$ $\quad "$ $\quad "$ 主任研究員 研究員	桑田 彰 牧野 角平 河野 圭助 遠藤 浩志 鈴木 賢二 鈴木 英二 小野 和広 後藤 裕子 谷口 彩 関澤 春仁 高橋 亮 大堀 俊一 橋本 春夫 竹内 克己 須藤 靖典 出羽 重遠 山崎 智史 小熊 聡	支援センター業務の総括 庶務，会計事務 グループ業務の総括食品加工に関する試験•研究•技術支援発酵食品•酒類に関する試験•研究•技術支援食品加工に関する試験•研究•技術支援 ＂ ＂ ＂ ＂ 発酵食品•酒類に関する試験•研究•技術支援 グループ業務の総括 木工に関する試験•研究•技術支援 デザイン・漆工に関する試験•研究•技術支援漆工に関する試験•研究•技術支援 C G•木工・デザインに関する試験•研究•技術支援窯業・デザインに関する試験•研究•技術支援 C G・デザインに関する試験•研究•技術支援
〔いわき技術支援センター］ ［材料グループ］ 7 名	所長 主査 科長 主任研究員 ＂ 副主任研究員 ＂	大越 正弘 小鍛治孝則 関根 義孝 加藤 和裕 吉田 正尚 冨田 大輔 安藤 久人	支援センター業務の総括 庶務，会計事務 グループ業務の総括 工業材料の分析•評価に関する試験•研究•技術支援材料化学に関する試験•研究•技術支援 機械加工•精密計測に関する試験•研究•技術支援金属材料に関する試験•研究•技術支援
合 計 87名			

2 平成18年度福島県ハイテクプラザ事業実施概要

2 平成18年度福島県ハイテクプラザ事業実施概要

2－1 企画情報事業

2－1－1 試験研究業務企画推進事業

名 称	実施日	場 所	テ ー マ	参 加 機 関
$\begin{aligned} & \text { 福島, 山形, 新潟三県 } \\ & \text { 共同研究研究•企画担 } \\ & \text { 当者会議 } \end{aligned}$	7／18	新潟県庁	平成18年度三県共同研究の進め方につい	福島県ハイテクプラザ福島県林業研究センター山形県新潟県
$\begin{aligned} & \text { 福島, 山形, 新潟三県 } \\ & \text { 共同研究研究•企画担 } \\ & \text { 当者会議 } \end{aligned}$	3／20	$\begin{array}{\|l\|} \hline \text { 興和ビル } \\ \text { (新潟市) } \end{array}$	平成18年度活動実績検討 平成18年度試験成績報告及び意見交換平成19年度三県共同研究の進め方につい て	産業創出グループ福島県ハイテクプラザ福島県林業研究センター山形県新潟県
試験研究機関ネット $ワ$ 而ネク事業共同研究分 科会幹事会	$\begin{gathered} \hline 5 / 31 \\ 9 / 8 \\ 2 / 9 \end{gathered}$	$\begin{aligned} & \text { ハイテク } \\ & \text { プラザ } \end{aligned}$	平成18年度共同分科会事業他 平成 18 年度研究進捗状況 平成 19 年度事業計画，予算案	分科会幹事（県試験研究機関部長等）産業創出グループ
福島県科学技術調整会議研究機関検討会	9／19	県庁	平成18年度共同研究の進渉状況について平成18年度試験研究評価の実施について	県試験研究機関部長等
福島県科学技術調整会	9／22	県庁	平成18年度共同研究の進捗状況について平成18年度試験研究評価の実施について	県試験研究機関長等

2－1－2 情報提供事業

発行 印 刷 物 名	部数	回数	主 な 配 布 先
福島県ハイテクプラザ試験研究報告	450	年1回	県市町村，国公立試験研究機関，関係機関等
福島県ハイテクプラザ試験研究概要集	800	＂	来所者，関係機関等
福島県ハイテクプラザ業務年報	700	＂	県市町村，国公立試験研究機関，関係機関等
福島県ハイテクプラザ事業計画	1，000	＂	＂
テクノネットふくしま	9，200	年4回	県内事業所および県，国公立試験研究機関等
福島県ハイテクプラザパンフレット	5，000	随 時	来所者等
福島県ハイテクプラザ使用料•手数料案内	3，500	年1回	＂
戦略的ものづくり技術移転推進事業成果集	500	＂	＂
集まれ口！ハイテクプラザパンフレット	86，000	＂	県市町村，教育委員会，小学校，関係機関等

2－1－3 コンピュータネットワーク事業

名 称	件数	内 容
ホームページ技術相談コーナー	120	ホームページ上で技術相談を受け付け
ニュースフラッシュの発行	約200件	メールマガジンによりハイテクフラザラ関連事業紹介
（月2回）	主な配布先：県内企業，関係団体等	

2－2 研究開発事業

2－2－1 重点研究課題

（1）公募型新事業創出プロジェクト研究事業（4件）
1 カーボンナノチューブ（CNT）含有樹脂による高機能複合体の開発（H16～H18）

材料技術グループ 長谷川隆 菊地時雄

山形大学エ学部 ムネカタ株式会社 東洋プラスチック精エ株式会社 株式会社朝日ラバー
電気•電子部品市場向けに，カーボンナノチューブ（Carbon Nano Tube）含有樹脂を利用した電磁波シールド性能を有する高機能発泡体材料とその製造プロセス開発の研究を行った。また，その結果により，共同研究企業では CNT の配向を制御した高熱伝導材料や低ソリ帯電防止材料の開発を行った。

2 食品残滓等の高度利用システムの確立と事業展開（H16～H18）

プロセス技術グループ 池田信也 渡邊真 大野正博
株式会社 J•Kリアルエステート 常磐開発株式会社 有限会社バイオインテック いわき明星大学科学技術学部
常磐興産グループでは，炭坑跡地に汲み上げポンプ，配湯タンク等を設置し，熱交換機と乾燥発酵型処理槽を組み合 わせて，実証試験を行った。その結果，熱交換機から出る温風は 50 度を越え，温度も安定しており，発酵乾燥処理が適正に行われることが分かった。更に，この熱を再利用して，ビニールハウス内の暖房に利用して栽培試験を行ったが，
無（減）農薬栽培では病害虫への対策が不可欠であることが分かった。
いわき明星大，（有）バイオインテックでは，廃出されるカニ殻から，キチンを効率よく抽出する方法を検討した。 また，キトサンへの変換方法も検討し，収率が向上した。
一方，ハイテクプラザでは，米飯廃棄物について，効率の良い糖化方法及び発酵方法を検討した。その結果，残米飯 の糖化には，麹菌と酵素を組み合わせた方法を利用することが効率的であるとの結論を得たが，事業化のための連続発酵についてはさらに検討が必要である。本事業で，廃棄物から抽出された有用物質は，抗菌スプレー，うがい薬などの用途に利用され，発売される予定である。

3 ナタデココ類生産菌を用いた新規機能性食品の開発（H16～H18）
会津若松技術支援センター 鈴木英二 谷ロ彩 河野圭助
郡山女子大学 株式会社太田酢店 株式会社かねほん 旭乳業株式会社 株式会社宝来屋本店 株式会社白亜館
食酢醪からバクテリアセルロース（ BC ）を高生産する酢酸菌を分離した。この分離菌3P11株を用いて，ヨーグルトに二種乳酸菌を混合し培養を行うと，BC 生産菌は BC をより多く生産することが分かった。また混合培養を行うことによ り，BC がヨーグルトを包み込む形をとることが分かった。BC 生産菌により生産された食物繊維と，ヨーグルト乳酸菌 の持つ整腸作用等の機能性効果を兼ね備えた新規の発酵食品デザートの試作を行った。

4 窒素固溶によるステンレス鋼の高機能化に関する研究開発（H18～H2O）
材料技術グループ 栗花信介 光井啓宮城工業高等専門学校 駿河精機株式会社 トミ一株式会社 林精機製造株式会社
ニッケルを含まないフェライト系ステンレス焼結材に真空熱処理炉を利用した加圧窒素吸収処理を行った。その結果，窒素吸収に伴い組織がオーステナイト組織となり，微粉焼結材では通常粉焼結材に比べて気孔が少なく，強度•延性に優れていることが分かった。

（2）地域活性化共同研究開発事業（4件）

1 マイクロ構造を持つ微細プラスチック部品成形技術の開発（H16～H18）
プロセス技術グループ 本田和夫 三瓶義之 安齋弘樹 伊藤嘉亮
フジモールドエ業株式会社 モルデック株式会社
次世代医療等で用いられる，マイクロ構造を持つプラスチック部品の金型作製と射出成形が可能となった。ハイテク プラザはマイクロ熱サイクル成形金型を，モルデック（株）は鉛フリー半田対応の狭ピッチコネクターを，駿河精機（株） は高精度位置合せ金型を開発した。

2 常圧過熱水蒸気を利用した食品の微生物制御及び加工技術の開発（H16～H18）

会津若松技術支援センター 小野和広 遠藤浩志
株式会社シスコムエンジニアリング 阿部製粉株式会社 郡山女子大学
常圧過熱水蒸気（Superheated steam：SHS）処理を応用し，製造現場における菌数の少ないソバ粉の製造および，それ を原料にした生そばの保存性について検討した。その結果，SHS 処理により菌数の少ないソバ粉が製造でき，これを原料に用いた生そばは明らかに日持ちが延長した。官能評価において処理による影響は認められず，これよりSHS 処理は保存性に優れた生そばの製造に有効と考えられる。

3 新エネルギー発電システムの開発（H17～H18）

システム技術グループ 高橋淳 尾形直秀 大内繁男 高樋昌 平山和弘 濱尾和秀 吉田英一
有限会社エイチ・エス・エレクトリック 北芝電機株式会社 JUKI電産株式会社
福島コンピューターシステム株式会社
小型風力発電システム用の安価で効率の良い発電機と，電力を安定供給するフルデジタル制御のインバータ，多機能電力調整装置，小型の発電システムをインターネットで接続する組込みマイクロコンピュータシステムやソフトウェア などを開発した。

4 炭素繊維縫合糸の開発と炭素繊維三次元織物の試作提案（H17～H18）

福島技術支援センター 三浦文明 伊藤哲司 東瀬慎 佐々木ふさ子
株式会社シラカワニ本松工場 岩瀬プリンス株式会社 株式会社ニーズプロダクト
炭素繊維織物を積層し炭素繊維三次元織物を製造するための技術開発と，炭素繊維縫合系の開発に取り組み，その製造技術やサンプルを自動車や航空機製造メーカー，繊維製造メーカー，大学，学会等へ提案•展示した。現在までに各分野から多くの関心が寄せられてきており，利用分野の拡大が期待されている。

（3）福島，山形，新潟三県公設試験研究機関共同研究事業（1件）

1 地域特産資源を活用したふるさとブランド機能性食品の開発（H18～H2O）
会津若松技術支援センター 関澤春仁 後藤裕子 谷口彩 河野圭介林業研究センター
県内で採取されたブルーベリー，桑の実，ブラックベリー，ナツハゼと北欧産ビルベリーについて，ベリー類の主要な機能性成分であるアントシアニンの含量を調査した。その結果，ブルーベリーと同種属であるナツハゼは非常に多くの アントシアニンを含むことが確認された。また，ブルーベリーについても，品種•採取時期•栽培方法によってアント シアニン含量に差があることが明らかとなった。

2－2－2 一般研究課題

（1）ニーズ対応型研究開発事業（8件）

1 歯科用材料および虫歯予防技術の開発（H16～H18）

いわき技術支援センター 加藤和裕奥羽大学歯学部
粉体またはスラリー状態の α－TCP（リン酸三カルシウムの高温安定相）を手指等で押し込むように力を加えると，小窩裂溝に填塞できることが分かった。 α－TCP のアパタイト化と同時に歯表面に微細なアパタイト結晶が析出すること から，時間経過とともに填塞物と歯が一体化すると期待できる。
$\left.\begin{array}{|l|l|}\hline 2 \text { 食卓回りを中心とした食器•家具の開発一産業工芸分野におけるユニバーサルデザインの提案（H16～H } \\ 18 \text { ）}\end{array}\right]$

3 亜鉛めっきのノンクロム化成処理技術の利用拡大化（H17～H18）

材料技術グループ 渡部修 宇津木隆宏 植松崇

クロムフリー化成処理技術に対し企業が求めるコスト面や性能面の課題をクリアするため，昨年度確立したタンニン を利用した化成処理技術のさらなる改良に取り組んだ。その結果，約 3 分の 1 の工程で，より優れた防錆皮膜を形成で きる技術の開発に成功した。

4 新機能付与高付加価値糸及び繊維の開発（H17～H18）

福島技術支援センター 吉田正尚

オモリを使用しない磯釣りで，ポリエチレン（PE）製釣り系（比重 0．9）を海水中で沈降させるために釣り絲の高比重化を行った。その結果，その化学的構造から表面不活性な PE 基材でも，ある条件を整えゾルーゲル法を応用した方法 であれば釣り系全体の高比重化が達成されることが分かった。今後はこの技術を基に「蓄光ポリエチレン釣り系」で実用化していく予定である。

5 新多様性清酒酵母の開発（H17～H19）

会津若松技術支援センター 鈴木賢ニ 高橋亮

近年，各県オリジナルの清酒酵母が開発され，各県の個性豊かな清酒開発が盛んになっている。ハイテクプラザとの共同研究により作製された高香気性酵母約 1000 種より， $701-15$ 株， $901-\mathrm{A} 113$ 株の 2 種を選択し，大吟醸酒の試験醸造を行ったところ，吟醸香が高く，良質な大吟醸酒の製成が可能となった。

6 大型液晶用ガラス基板へのディンプルパターン転写技術の開発（ H 18 8）

プロセス技術グループ 吉田智 小野裕道
株式会社アンデスインテック
大型液晶パネル用ガラス基板へのディンプルパターン転写方法について検討した。その結果，金型及びスタンパーの組み合わせによる方法には多くの課題があり，大面積加工が可能なディンプルパターンの加工法を含めた更なる検討が必要と考えられた。

7 耐久性の高い高反射率金属薄膜の開発（ H 1 8 ）

プロセス技術グループ 三瓶義之 伊藤嘉亮株式会社吉城光科学
スパッタ法で成膜した酸化アルミ／銀合金（ $\mathrm{Ag}, \mathrm{Pd}, \mathrm{Cu}$ ）／銀／基板の薄膜により，腐食環境においても反射率の低下が少ないOA機器用ミラーを作製することができた。

8 樹脂コーティング処理木材の用途開発（ H 1 8）

会津若松技術支援センター 橋本春夫

スギ材を用いたフローリングなどの内装材やテーブルなどの商品開発を目指し，熱プレスなど設備的制約を受けず に，スギ材の表面を強化する樹脂コーティング処理方法の改良技術の検討を試みた。その結果，新たなコーティング処理により，最も軟質な早材部の圧入強さ（直径 3 mm 鋼球による）が無処理材より 3 倍程度まで向上し，鉄筆による引 つ掻き（重り 1 kg ）でも傷つき難く，硬い表面に強化する改良効果が得られた。また，住環境に対応したコーティング処理液を開発した。このことから，用途に応じた新たなコーティング処理技術を得ることが出来た。

（2）調査研究開発事業（1件）

1 高性能発電素子による排熱回収システムの開発（H18）
プロセス技術グループ 佐藤善久 連携支援グループ 橋本政靖
工場から発生する $200^{\circ} \mathrm{C}$ 未満の排熱を活用するため， $\mathrm{Bi}-\mathrm{Te}$ 系熱電モジュールを利用した空冷式発電ユニットを試作 した。実験室において，熱源の温度が $180^{\circ} \mathrm{C}$ のときに発電ユニット（熱電モジュールを 1 台搭載）から約 1 W の出力が得られた。

2－2－3 その他の研究課題

（1）試験研究機関ネットワーク共同研究事業（7件）
1 ソバの機能性に影響を及ぼす品種および栽培条件（H17～H19）

会津若松技術支援センター 遠藤浩志 小野和広

農業総合センター 水産試験場 林業研究センター 環境医学研究所 東北農業研究センター
機能性成分が多く，生産性に優れているソバ育成系統の会津 $1,2,3$ 号について，ルチン含量，収量特性の年次変動を調査すると共に，製粉•製麺適性と食味試験を行った。その結果，会津 3 号は，栽培年度にかかわらずルチンが多く，収量特性にも優れていることが確認され，更に製麺性やそばの食味にも優れた系統であることが分かった。

2 福島県オリジナル「紫アスパラガス」品種および機能性強化資材の開発（H17～H19）
システム技術グループ 尾形直秀 平山和弘 高橋淳
農業総合センター
優良な「紫アスパラガス」品種を育成するとともに，機能性成分含有の増加促進資材を開発することで特色あ るアスパラガス産地の育成を図る。平成 18 年度は，全光反射白色不織布を畝上に設置し，着色の評価，機能性成分であるポリフェノール含量の評価などを行った。

3 無線LANを用いた果樹ほ場の温度測定法および凍霜害対策への活用法の開発（H17～H19）

システム技術グループ 高樋昌 浜尾和秀
農業総合センター
果樹の凍霜害対策には，ほ場における地表面温度，樹体温度等の詳細な測定が必要である。このため，ネットワーク を用いた環境測定装置とこれを利用した情報提供システムを開発することを目的とする。平成 18 年度までに，サーミ
スタをセンサとした計測用ボードを試作し，ネットワーク上での稼動試験などを行った。

4 福島県オリジナル大吟醸酒向け酒米品種の育成（H17～H19）

会津若松技術支援センター 高橋亮 鈴木賢ニ

農業総合センター
福島県オリジナル大吟醸酒向け酒米品種の育成のため，対照である酒造好適米「五百万石」，「夢の香」と同等程度の優れた酒造適性を示した「郡系酒 452」「郡系酒 621」「郡系酒 663」について醸造適性に主眼をおいた新規酒造好適米 の実用性を検討した。

5 猪苗代湖環境汚染に対するユビキタスセンシングモニターの開発（H17～H19）
システム技術グループ 浜尾和秀 高樋昌内水面水産試験場 環境センター
従来の水質センサー用テレモニタシステムに代わる新しいテレモニタシステムを検討した。猪苗代湖に流入する小黒川で連続した濁度測定を実施し，テレモニタに必要な要件を確認した。また，猪苗代湖の環境汚染を考察するために必要な調査測定事項の洗い出しを行った。

6 人工浮島の施工による湖沼の水質保全（H17～H19）

プロセス技術グループ 緑川祐ニ 小野裕道 福島技術支援センター 三浦文明
農業総合センター 内水面水産試験場 環境センター
人工浮島の施工により，湖沼の水質保全を目的とする。平成 18 年度は，人工浮島の試作および枠試験による水質浄化実験を経て，改良型の試作 3 号を水質污濁が問題となっている香久池公園内の池に浮かべ，水質浄化の実験を行った。

```
7 内燃機関への植物油利用技術 (H17~H19)
    プロセス技術グループ 藤井正沸
    農業総合センター
    持続可能型社会の形成におけるキーテクノロジーとして, 内燃機関へ再生可能エネルギーである植物油燃料の利用可
能性について, バイオディーゼル燃料や石油燃料と比較し, 検討した。
```

（2）受託•共同研究事業等（8件）

```
1 血糖値改善効果を有する桑葉の製品開発 (H16~H18)
    (農林水産省 先端技術を活用した農林水産研究高度化事業)
    会津若松技術支援センター 後藤裕子 河野圭助
    東北大学大学院農学研究科 東北農業研究センター 農業総合センター ミナト製薬株式会社
    1-デオキシノジリマイシン(DNJ)を含有する桑葉原料を効率よく生産するため, 茶刈機を用いた収穫法を検討した。
その結果, 従来の収穫法よりも簡易に, かつ DNJ 含量に影響を及ぼすことなく収穫が可能であることが確認された。
また, 本共同研究によって開発された DNJ 高含有桑葉エキスを用いて食品の試作を行い, 一般的な食品への応用が可
能であることを示した。
```

2 ハプテック機能を持つやさしくやわらかい次世代ロボットハンド・アームシステムの開発と医療支援システ ムへの応用（ $\mathrm{H} 18 \sim \mathrm{H} 2 \mathrm{O}$ ）
（文部科学省 都市エリア産学官連携促進事業）
材料技術グループ 菊地時雄
福島大学共生システム理工学類
＜軽くて丈夫なロボットハンド＞の骨格部分を新規複合材料で試作した。骨格部分として 80 g 以下という制限がある ため発泡成形体と炭素繊維シートとのサンドイッチ構造を採用した。その結果，構造体として比重 0.3 ，扁平強度で 5倍，曲げ強度で 2 倍の構造体を開発した。

3 筋電位入カパワーアシストハンドの開発（H18～H19）
（福島県 うつくしま次世代医療産業集積プロジェクト事業）
いわき技術支援センター 安藤久人 冨田大輔
いわき明星大学 有限会社品川通信計装サービス
高齢者や軽度の脳梗塞，骨折など手腕の動作が不自由な方の，生活支援やリハビリテーションを目的とした，パワー
アシストハンドの試作機を開発した。コップの握り動作などの補助が可能となった。

4 UV－LIGAを用いた微細構造をもつめっきパターンによる磁気スケールの開発（H18～H19）
（独立行政法人科学技術振興機構 産学共同シーズイノベーション化事業顕在化ステージ）
プロセス技術グループ 伊藤嘉亮 三瓶義之 安齋弘樹
ニッコーシ株式会社
軟磁性材料と硬磁性材料を使い，めっきにより微細な磁気スケールの開発を進めている。

```
5 液晶用高品位内面拡散板製造法の開発（H18～H19）
（経済産業省 地域新生コンソーシアム研究開発事業）
```

プロセス技術グループ 吉田智
株式会社アンデスインテック フガクエ機株式会社 パーフェクトン株式会社
ハイテクプラザが実施した液晶用ディンプル型反射板開発の成果を活用し，携帯電話用液晶パネル板の量産化製造法 の開発を進めている。

6 「微粒化彩色UV漆インキ」の開発とデジタル対応化（H18～H19）
（経済産業省 地域新生コンソーシアム研究開発事業）
会津若松技術支援センター 須藤靖典 出羽重遠 小熊聡
株式会社小野屋漆器店 カシュー東北株式会社 山陽アーチ株式会社 ヤマハリビングテック株式会社株式会社ユーアイヅ 吉田テクノワークス株式会社 明治大学 独立行政法人産業技術総合研究所
ハイテクプラザが開発した技術を活用し，従来の 25 万分の 1 のスピードで硬化するとともに超微粒化することでデ ジタル印刷を可能とする漆インキの開発を進めている。

7 ニッケルフリー高窒素高耐食ステンレス鋼の開発（H17～H18）
（独立行政法人日本学術振興会 科学研究費補助金）

材料技術グループ 光井啓

ハイテクプラザでは，ニッケルを含まないフェライト系ステンレス鋼に加圧窒素吸収処理を施し，高窒素高耐食オー ステナイト系ステンレス鋼の開発を行っている。本研究では，研究をスムーズに進めるために有効な，ステンレス鋼中 の窒素固溶量を予測する数式を導き出した。

8	天然多価フェノール化合物を利用した金属表面の化成処理（H17～H18） （独立行政法人日本学術振興会 科学研究費補助金）
材料技術グループ 渡部修	

（3）公募型ものづくり短期研究開発事業（14件）

1 ゴムのCAE解析（H18）

連携支援グループ 工藤弘行 材料技術グループ 菊地時雄株式会社朝日ラバー
定量的な材料評価•製品設計を行ならために，CAE によるシミュレーション的な手法と，実験的手法を組み合わせる手法，確率設計的な手法の検討を行った。その結果，製品としての破壊特性をより正確に把握することができた。

2 身不知柿を原料とし，発酵微生物を使用した加工食品の開発（H18）

会津若松技術支援センター 谷ロ彩 室井梨沙子 河野圭助
喜多方みしらず柿商品開発研究会
喜多方産の身不知柿を用いて渋戻りの少ない柿の加工品及び食品素材の開発を行った。その結果，柿ペーストに対し て重量比で 0.01% の酵素（スクラーゼ N）を作用させることにより透明度が高く，搾汁時間•搾汁効率ともに優れた柿の果汁を得ることができた。またその果汁を $70^{\circ} \mathrm{C}$ で加熱しても渋戻りが少ないことが確認された。さらに食品素材とし て濃縮エキス，柿パウダーを開発した。

3 エディブルフラワー（食用花）の長期保存（ H 1 8 ）

会津若松技術支援センター 谷ロ彩 室井梨沙子 河野圭助

食いものづくり研究会
エディブルフラワーの一つであるキンギョソウの花弁及び切り花の状態での日持ち延長を目的として，保存条件の検討を行った。その結果，保存温度を低く保ち，乾燥を防ぐことにより日持ちが延長出来ることが分かった。また，切り花状態ではトレハロース水溶液を用いることにより，花びらの状態を良好に保つことができた。

4 豆乳利用嚥下食品（ H 1 8 ）

会津若松技術支援センター 遠藤浩志 小野和広

（県内企業）

高齢者が誤嚥の心配がなく安全に摂食できる豆乳ゼリーの開発を目的に，かたさ及び動的粘弾性から，適合するゲル化剤と使用量を検討した。その結果， $5 \sim 50^{\circ} \mathrm{C}$ の温度帯で嚥下食としての物性を保持できる数種のゲル化剤を選択した。 これらを用いた豆乳ゼリーを試作し，老人施設において高齢者を対象に嗜好調査を行い，飲み込みやすさや美味しさに ついて調査した。

5 江持石粉砕物を再利用した陶磁器類の開発（H18）

会津若松技術支援センター 山﨑智史 水野善幸

（県内団体）

江持石製品の切研削工程で排出される粉砕屑を活用し，陶磁器類の開発を行った。その結果，江持石独特の風合いを活かした陶磁器とすることができた。これらの陶磁器は，須賀川の名物料理と組み合わせて全国展開される予定となっ ている。

6 アルミナ製品の純度，不純物定量方法（ H 1 8）

いわき技術支援センター 中山誠一

（県内企業）

アルミナ焼結部品の純度，不純物を定量する方法の検討を行った。その結果，アルミナ乳鉢を用いた試料の粉砕によ り，分解•分析時間を短縮して定量分析することができた。

7 大久保陶石系素地へのイングレーズ技術の開発（ H 1 8 ）

会津若松技術支援センター 山﨑智史 水野善幸

（県内企業）

特有の美しさと優れた耐久性を併せ持つイングレーズ手法を会津本郷焼の磁器に応用するため，釉薬の開発を行っ た。その結果，数種類のバリエーションを持ったイングレーズ向けの婇薬を開発することができた。

8 溶融亜鉛めっきへの茶色系防食皮膜の形成（ H 18 ）

材料技術グループ 宇津木隆宏 渡部修

日本電炉株式会社

溶融亜鉛めっきの着色法として，涂装よりも低コストな化成処理により，茶色の外観を有する皮膜を形成させること ができた。また，この茶色皮膜を酸化チタンで後処理することにより，紫外線による色の劣化を抑制させることができ た。

（※ 知的所有権等の事情により， 5 件の課題および一部の企業名については掲載しておりません。）

2－2－4 客員研究員事業（講師招聘総回数：17回）

専門的知識を有し，各技術的課題に精通した大学教授，国立•民間試験研究機関の研究者等を客員研究員として招聘 し，技術指導を受けることで，複合技術•先端的技術等の研究開発に取り組む。

研究テーマ名	実施日	場所	指導内容	客員研究員名
窒素固溶によるステ ンレス鋼の高機能化 に関する研究	12／15	$\begin{aligned} & \text { ハイテク } \\ & \hline \end{aligned}$	ステンレス鋼の耐食性及び耐食性評価方法について	炭手大学工学部応用化学科 教授 八代
	2／20	$\begin{aligned} & \text { ハイテク } \\ & \text { プラザ } \\ & \hline \end{aligned}$	鉄鋼材料の窒化及び窒素固溶につ いて	宮城工業高等専門学校名誉教授 坂本政祀
小径管内面の研磨技術	10／12	$\begin{array}{\|l\|} \hline \text { パラテク } \\ \hline \end{array}$	MCFによる細管の内面研磨	富山工業高等専門学校 教授 西田均
高性能発電素子によ る排熱回収システム の開発	11／8	\|プラザ	鉛フリーはんだ接合部における欠陥低減	（株河野エムイー研究所社長 河野英一
新エネルギー発電シ ステムの開発	10／12	$\begin{array}{\|l\|l\|} \hline \text { プラデク } \\ \hline \end{array}$	て研究進捗状況と今後の展開につい	日本大学工学部情報工学科 教授 佐藤晴夫
	11／21	$\begin{array}{\|l\|} \text { ハフイテク } \\ \text { プラザ } \end{array}$	研究進捗状沉と今後の展開につい て	岩手県立大学ソフトウェア情報学部教授 布川博士日本大学工学部電気電子工学科助教授 杉浦義人
	3／6	\|パイテク	事業化について	$\begin{aligned} & \text { 東北大学大学院工学研究科 } \\ & \text { 電気•通信工学専攻 } \\ & \text { 教授 一ノ倉理 } \end{aligned}$
食卓回りを中心とし た食器•家具の開発	5／9	（森アルモ設計（東京都港区）	試作品開発における製作過程及び製作手法について	武蔵野美術大学 教授 小石新八
	12／4	$\begin{array}{\|l\|l\|} \hline \text { 会津若松 } \\ \text { 技術支援 } \\ \text { センター } \\ \hline \end{array}$	開発製品の販売手法や総合的な商品展開について	（株アルモ設計 福田寿寛
	3／8	会津若松技術支援 センター	研究の現状報告と次年度の研究計画について	（株アルモ設計 福田寿寛
豆乳を利用した高齢者にやさしい食品の開発	8／25	$\begin{aligned} & \text { 会津若松 } \\ & \text { 技術支援 } \\ & \text { センタ } \end{aligned}$	嚥下食の病院及び老健施設等への導入について	日本獣医生命科学大学 応用生命科学部 教授 金子憲太郎
樹脂コーティング処理木材の用途開発	1／22	会津若松技術支援 センター	樹脂コーティング処理木材の特許 について について	吉川特許事務所 弁理士 吉川勝郎
UV漆インキの知的財産	3／5	水野特許 商標事務 所	UV漆インキの特許及び使用につ いて	水野特許商標事務所弁理士 水野博文
アルミナ部品の純度，不純物定量方法	8／25	産総研中部セン ター（名古屋）	アルミナ焼結品の分解•分析技術 について	産総研中部センター 上㝨義則
創造性育成セミナー	10／4	$\begin{aligned} & \text { いわき } \\ & \text { 技術支援 } \\ & \text { センター } \end{aligned}$	TRIZを利用した発想法について	（株アイデア 前古護
いわき材料技術セミ ナー	1／31	いわき技術支援 センター	WEEE／RoHS指令セミナー	日本電子 ${ }_{\text {（林 }}$ 松浦徹
	3／16	いわき技術支援 センター	現場で役立つGPS規格と表面粗 さ	株ミツトヨ 石戸谷孝雄

2－2－5 推進会議•研究開発指導等

推進会議：研究の円滑な推進を目的とする，産学官の有識者から構成される会議。
研究開発指導：高度な学識経験を有する研究者を招聘し，研究内容について助言，指導を受ける。
（1）推進会議

名 称	実施日	場所	テ ーマ	委 員
公募型新事業創出プ ロジェクト研究事業推進会議	10／31	$\begin{gathered} \text { ハイテク } \\ \text { プラザ } \end{gathered}$	カーボンナノチューブ（CNT）含有樹脂による高機能複合体の開発	福島大学地域創造支援センター産学連携コーディイネーター 八代勉会津大学産学イハベーションセンター産学連携コーデイネーター 本杉常治 （財福島県産業振興センター科学技術コーデイネーター 高橋宣光科学技術コーディ湶ーター 野田博行 （則郡山地域テリノポリス推進機構 コーディネーター 宮越稔福島県商工労働部地域経済領域産業創出グループ参事 藤島初男 ヘイテクプラザ所長 宮野壯太郎学識経験者研究参画機関研究担当者
	11／8		食品残漳等の高度利用システムの確立と事業展開	
	$4 / 28$ $11 / 8$		ナタデココ類生産菌を用いた新規機能性食品の開発	
	10／31		窒素固溶によるステンレス鋼の高機能化に関する研究開発	
地域活性化共同研究開発事業推進会議	11／21	＂	マイクロ構造を持つ微細プラス チック部品成形技術の開発	
	$\begin{gathered} 10 / 26 \\ 2 / 13 \end{gathered}$	会津若松技術支援 センター	常圧過熱水蒸気を利用した食品の微生物制御及び加工技術の開発	
	$11 / 21$ $11 / 14$	$\begin{array}{\|l\|} \hline \text { ハイテク } \\ \text { プラザ } \end{array}$	新エネルギー発電システムの開発 炭素綫維縫合系の開発と炭素繊維 三次元織物の試作提案	

（2）技術開発指導

名 称	実施目	場所	テ ーマ	講 師
研究開発指導	3／19	仙台市	「マイクロ構造を持つ微細プラス チック部品成形技術の開発」	東北大学 教授 西澤松彦

（3）福島•山形•新潟三県公設試験研究機関共同研究事業関連会議
（地域特産資源を活用したふるさとブランド機能性食品の開発）

名 称	実施日	場所	内 容	委 員
企画•研究担当者会議（再掲）	7／18	新潟県庁 （新潟市）	各県の研究概要及び研究予算等， スケジュール	企画支援部長 大河原薫企画管理グループ科長 菅原康則主任研究員 長澤浩会津若松技術支援センター食品技術グループ科長 河野圭助研究員 関澤春仁
	3／20	興和ビル （新潟市）	平成18年度活動実績検討，試験成績報告及び意見交換	企画支援部長 大河原薫企画管理グループ科長 菅原康則主任研究員 長澤浩会津若松技術支援センター食品技術グループ科長 河野圭助研究員 関澤春仁
共同研究担当者会議	12／8	新潟県農業総合研究所食品研究センター	研究開発事業の進捗状況，今後の予定，情報交換	会津若松技術支援センター食品技術グループ科長 河野圭助研究員 関澤春仁

2－2－6 グリーンインダストリー形成支援事業

産学官の連携による地域戦略技術の掘り起こしを行う事業

名 称	実施日	場所	テーマ	参加者
R E S T 研究会	$\begin{array}{\|l\|} 4 / 26,5 / 1 \\ 7,6 / 21,7 \\ / 19,8 / 23 \\ , 9 / 20,10 \\ / 18,11 / 2 \\ 9,1 / 17,2 \\ / 14,3 / 6 \end{array}$	\|パイテク	行政ニーズ等に基づく研究方向性 の検討等	ハイテクプラザ科長等 （支援センター含む）
$\begin{aligned} & \text { グリーンインダスト } \\ & \text { リーセミナー } \end{aligned}$	$11 / 29$ $12 / 20$	\|パイテク		ハイテクプラザ職員 および関連製造業者
	1／17			

2－3 指導事業

2－3－1 戦略的ものづくり技術移転推進事業

（1）公募型ものづくり短期研究開発事業（14件）
県内中小企業が緊急に解決したいものづくりに関する技術課題について，ハイテクプラザが企業に代わって短期間で研究開発を行い，その成果を提案企業に対して現地指導することによ り技術の移転を行う。
1 事業概要
（1）募集対象 県内中小企業
（2）募 集 期 間
前期 平成18年 5月12日まで
後期 平成18年10月6日まで
随時
（3）募集課題数
（4）選考基準
10 課題程度

- 速やかな問題解決の必要があり，自社での解決が困難なこと。
- ハイテクプラザに新たな設備導入の必要がないこと。
- 短期（概ね $3 ヶ$ ヶ以内）に研究終了可能なこと。
- 提案企業に研究成果導入の見込みがあること。
（5）研究期間概ね3ヶ月以内
（6）技術移転研究終了後，早急に提案企業に対し現地指導を行う。
（7）成果の公表 原則として平成18年度試験研究概要集および平成18年度ハイテク プラザ技術•研究成果発表会で公表する。
2 採択結果
（1）応募総数 18 件
（2）採 択 件 数 前期 7 件
後期 6 件
随時 1 件
（3）実 施 課 題

No	研 究 課 題	企 業 名
1	ゴムのCAE解析	株朝日ラバー
2	身不知柿を原料とし，発酵微生物を使用した加工食品の 開発	喜多方みしらず柿商品開発 研究会
3	エディブルフラワー（食用花）の長期保存	食いものづくり研究会
4	豆乳利用興下食品	（県内企業）
5	江持石粉砕物を再利用した陶磁器類の開発	（県内団体）
6	アルミナ製品の純度，不純物定量方法	（県内企業）
7	大久保陶石系素地へのイングレーズ技術の開発	（県内企業）
8	溶融亜鉛めっきへの茶色系防食皮膜の形成	日本電炉株）
9	姫飯造りにおける製造管理技術の確立	花春酒造（株）

（知的所有権等の事情により，5件の課題および一部の企業名については掲載しておりません）
（2）ものづくりORT型技術移転事業（18件）
ものづくりに関するハイテクプラザ保有技術の県内中小企業への移転を促進するために，従業員を研修生として受け入れる。
1 事業概要
（1）対 象 県内中小企業
（2）研修期間 最大延べ10日間
（3）研修場所 ハイテクプラザ（各支援センター含む）

No	技 術 課 題	企 業 名	研修者数	日数
1	粉体評価技術	信越石英（株）	1 名	2 日
2	射出成形における樹脂流動状態の観察	ムネカタ（株）	1 名	1 日
3	微小部表面分析技術（S E M／E D X ）	テクノメタル（株）	5 名	2 日
4	微小部表面分析技術（S EM／E PMA）	東芝照明プレシジョン（株）	7 名	3 日
5	A F Mを用いた基板表面の微小領域粗さ評価	ナノックス（株）	1 名	2 日
6	食品中の微生物の測定技術	（株）宝来屋本店	1 名	2 日
7	微生物の同定法（微生物の群集解析）	（株）ジャパンバイオシステムズ	2 名	4 日
8	土壌中の硝化菌の分子生物学的手法による測定技術	トモエ化学工業（株）	1 名	3 日
9	V H D L 言語を使ったF P G A の プログラミング	（株）メカデ	1 名	3 日
10	ファッション衣料の基礎知識	永山産業（株）	1 名	10日
11	微小部表面分析技術（S E M ）	沖マイクロ技研（株）	1 名	3 日
12	ナタデココの加工技術の確立	（株）宝来屋本店	1 名	10 日
13	アロマハーブウォーターの抽出	会津自然派宣言	2 名	10 日
14	どぶろく製造技術の修得	（株すがや	5 名	5 日
15	漆粘土素地で造形する立ち雛の製造法	大森漆器工房	1 名	10 日
16	N C 加工の基礎	（株エス・アイ・オンライン	1 名	6 日
17	微小部表面分析技術（S E M ）	会津コスモス電機株）	1 名	2 日
18	微小部表面分析技術（S E M ）	日本ベクトン・ディッキンソン（株）	2 名	3 日

2－3－2 技術支援事業（企業訪問）（215社）

2－3－3 技術顧問設置事業（講師招聘日数：23日）

名 称	実施日	場 所	テーマ	講 師	受講者
電子技術研究会（4日）					
第1回	6／14	天栄村天栄湯本公民館	新エネルギー発電の現状と 課題	日本大学工学部情報工学科教授 佐藤晴夫	21
第2回	7／3	$\begin{gathered} \text { ハイテク } \\ \text { プラザ } \end{gathered}$	ユビキタス社会の現状，問題点と動向	株式会社アンプレット代表取締役社長 根日屋英之	9
第3回	10／13	$\begin{aligned} & \text { ハイテク } \\ & \text { プラザ } \end{aligned}$	IS0（JIS Q）27001に基づく 情報セキュリティマジメ ントシステムについて	株式会社バルク コンサルティ ング事業部コンサルタント部長兼情報システム管理室長内藤裕之	9
第4回	10／26	$\begin{gathered} \text { ハイテク } \\ \text { プラザ } \end{gathered}$	特許法改正後の知的財産権 の活用について	水野特許商標事務所所長 弁理士 水野博文	7
組込み技術研究会（2日）					
第1回	3／9	$\begin{gathered} \text { ハイテク } \\ \text { プラザ } \end{gathered}$	｜オープンソースを自社の組込み開発で活用するには～ TOPPERSプロジェクトの視点から～	合資会社もなみソフトウェア代表役員 邑中雅樹	9
第2回	3／16	$\begin{aligned} & \text { ハイテク } \\ & \text { プラザ } \end{aligned}$	組込み家電とネットワーク プロトコルの現状	$\begin{gathered} \hline \text { 早稲田大学理工学術院コン } \\ \text { ピュータネッワーク工学科 } \\ \text { 教授 中島達夫 } \end{gathered}$	7
デザイン開発研究会（11日）					
第1回研究会	4／24～25	会津若松技術支援センター		漆芸作家 並木恒延	12
第2回研究会	7／6～7	会津若松技術支援センター	$\begin{gathered} \text { 目標アイテムのドローイン } \\ \text { グ } \end{gathered}$	漆芸作家 並木恒延	10
第3回研究会	$8 / 3 \sim 4$	会津若松技術支援センター	$\begin{array}{c\|} \hline \text { 目標アイデム及び試作品の } \\ \text { デザイン検討 } \end{array}$	漆芸作家 並木恒延	10
第4回研究会	10／5	会津若松技術支援センター	試作品デザインの最終検討	漆芸作家 並木恒延	10
第5回研究会	$\begin{gathered} 12 / 11 \sim \\ 12 \end{gathered}$	会津若松技術支援センター	試作品デザインの講評	漆芸作家 並木恒延	10
第6回研究会	2／26～27	会津若松技術支援センター	試作品の最終講評，製品化 に向けた展開	漆芸作家 並木恒延	11
新大堀相馬スタイル研究会（6日）					
第1回研究会	6／23	浪江町	商品開発の基本について	秋田公立美術工芸短期大学教授五十嵐潤	7
第2回研究会	8／30	浪江町	商品開発「展示会の方法と試作品」	秋田公立美術工芸短期大学教授五十嵐潤	6
第3回研究会	11／13	浪江町	商品開発「開発商品の進捗状況」	秋田公立美術工芸短期大学教授五十嵐潤	6
第4回研究会	12／27	浪江町	商品開発「展示作品」	秋田公立美術工芸短期大学教授五十嵐潤	5
第5回研究会	1／9	郡山市	商品開発「展示の準備」	秋田公立美術工芸短期大学教授五十嵐潤	3
第6回研究会	3／22	浪江町	商品開発「展示会の講評と次年度の取り組み」	秋田公立美術工芸短期大学教授五十嵐潤	4

2－3－4 技術相談指導事業（相談件数 3，897）

2－4 普及事業

2－4－1 研究成果発表会

名 称	実施日	場 所	発表数	記念講演またはテーマ	参加者
会津若松技術支援センター技術•研究成果発表会	6／27	会津若松技術支援センター	$\begin{array}{\|c\|} \hline \text { ポ スターセッション } \\ 21 \text { 件 } \\ \hline \end{array}$	平成18年度技術•研究成果発表会	161名
いわき技術支援センター技術•研究成果発表会	7／4	いわき技術支援センター	口答発表 6件		84名
福島県ハイテクプラザ技術•研究成果発表会	7／11	ハイテクプラザ	口答発表 17 件 ポスターセッショ 16 件	いわき明星大学の 20 年とこれ からの人材育成 いわき明星大学学長 高重正明	100名
福島技術支援センター技術•研究成果発表会	7／20	福島技術支援 センター	$\begin{gathered} \text { 口答発表 } \\ 4 \text { 件 } \end{gathered}$	東北地域の綫維製品リサイクルに ついて 学絧学院大学短期大 学部 助教授 玉田真紀	52名
公募型新事業創出プロジェク ト研究事業及び地域活性化共同研究開発事業中間発表会	9／27	ハイテクプラザ	口答発表 32 件 ポスターセッション 7 件	平成18年度中間発表会	100名
公募型新事業創出プロジェク卜成果普及講習会	2／21	いわき技術支援センター	口答発表 4 件	食品残㳯の高度利用システム の確立と事業展開	60名
	2／28	ハイテクプラザ	$\begin{gathered} \text { 口答発表 } \\ 4 \text { 件 } \\ \hline \end{gathered}$	カーボンナノチューブ（CNT）含有樹脂 による高機能複合体の開発	17名
	3／8	＂	$\begin{gathered} \hline \text { 口答発表 } \\ 4 \text { 件 } \\ \hline \end{gathered}$	ナタデココ類を用いた新規機能性食品の開発	60名
地域活性化共同研究開発事業成果普及講習会	2／23	会津若松技術支援センター	口答発表 4 件 4件	常圧過熱水蒸気を利用した食品の微生物制御及び加工技術 の開発	50名
	3／2	ハイテクプラザ	$\begin{gathered} \hline \text { 口答発表 } \\ 8 \text { 件 } \end{gathered}$	$\begin{aligned} & \text { 新エネルギー発電システムの } \\ & \text { 開発 } \end{aligned}$	38名
	3／13	$\begin{gathered} \text { 福島技術支援 } \\ \text { センター } \\ \hline \end{gathered}$	$\begin{gathered} \text { 口答発表 } \\ 4 \text { 件 } \\ \hline \end{gathered}$	炭素繊維縫合糸の開発と炭素繊維三次元織物試作提案	17名
	3／16	ハイテクプラザ	$\begin{gathered} \text { 口答発表 } \\ 4 \text { 件 } \\ \hline \end{gathered}$	マイクロ構造を持つ微細プラ スチック部品成形技術の開発	80名

2－4－2 投稿論文

テ ーマ	論 文 集 名	学 会•協 会 名	投稿者
（材料技術グループ）			
天然多価フェノール化合物による亜鉛表面の改質と界面構造	高分子論文集 Vol．63，No． 9 （2006）	高分子学会	渡部修植松崇鈴木雅千宇津木隆宏高橋泉
バクテリアセルロースを用いた環境に優しい複合材料 の開発	成形加工 Vol．18，No． 9 （2006）	$\begin{aligned} & \text { プラスチック } \\ & \text { 成形加工学会 } \end{aligned}$	菊地時雄小澤喜仁
Solution Nitriding Treatment of $\mathrm{Fe}-\mathrm{Cr}$ Alloys under Pressurized Nitrogen Gas	ISIJ International Vol．47，No． 3 （2007）	日本鉄鋼協会	光井啓栗花信介
（システム技術グループ）			
Characteristics of $8 / 6$ SR Generator with a Suppression Resister Converter	EPE－PEMC 2006	EPE－PEMC	高橋淳
Characteristics of $8 / 6$ Switched Reluctance	IEEE International		
Generator Excited by Suppression Resistor Converter	Magnetic Conference （INTERMAG2006）	IEEE	高橋淳
Characteristics of $8 / 6$ SR Generator with a Suppression Register Converter	ICEM 2006	ICEM	高橋淳

テ ーマ	論文集名	学会•協 会 名	投稿者
（会津若松技術支援センター）			
光重合性含漆合成樹脂組成物を応用した宗教具への装飾技術の確立と新奇デザインによる機能性付与の研究 1報•2報•3報	Industrial Art News \＆産業工藝研究 H18． 05	日本工藝技術協会	須藤靖典他
漆器で演出するテーブルコーディネート	塗装工学誌 H18．10	日本塗装技術協会	竹内克己
ユニバーサルデザインによる製品開発の取り組み	日本生活支援工学会誌 H19． 03	日本生活支援工学	出羽重遠
Effect of soybean varieties on the content and composition of isoflavone in rice－koji miso	$\begin{aligned} & \text { Food Chemistry } 100 \\ & \begin{array}{l} \text { (2007) } 369-374 \end{array} \\ & \hline \end{aligned}$	Food Chemistry	遠藤浩志

2－4－3 学会発表

テーマ	期 日	場 所	発 表 会 名 称	発表者
（材料技術グループ）				
超軽量複合材料システムの機械的特性	$\begin{gathered} 7 / 26 \sim \\ 28 \end{gathered}$	兵庫県神戸市	第48回構造強度に関する講演会	小沢喜仁菊地時雄渡邊真義矢吹浩一
バクテリアセルロースを用い た環境適合複合材料の力学的挙動	8／4～6	静岡県浜松市	日本機会学会M\＆M2006材料力学カンファレ シス	菊地時雄
Mechanical Behavior of Echo－Friendly Composite				
Echo－Friendly Composite Materials with Bacterial	9／14 ~ 15	東京都千代田区	Fourth International Workshop on Green Composite	菊地時雄
Cellulose				
加圧窒素吸収処理により作製 した高窒素SUS430鋼の組織及	$\begin{gathered} 9 / 16 \\ \sim 18 \end{gathered}$	新潟県新潟市	日本鉄鋼協会秋季講演大会	栗花信介
び機械的性質				
超軽量複合材料システムの開発	$\begin{aligned} & 9 / 20 \\ & \sim 22 \end{aligned}$	熊本県熊本市	日本機会学会2006年度年次大会	○渡邊真義小沢喜仁菊地時雄矢吹浩一
アルミニウムイオンを含む三価クロム化成処理と耐食性	$\begin{gathered} 10 / 13 \\ \sim 14 \end{gathered}$	北海道札幌市	表面技術協会第114回講演大会	宇津木隆宏
ABS樹脂内に分散する充填材の含有量が微細発泡構造に与え る影響	$\begin{gathered} 11 / 22 \\ \sim 23 \end{gathered}$	岐阜県岐阜市	第14回プラスチック成形加工学会秋季大会	\bigcirc 土屋淳志館山弘文菊地時雄高橋辰宏小山清人
バクテリア・セルロースを用 いた複合材料の三次元強化構造	$3 / 8 \sim 9$	京都府京都市	JCOM－36	菊地時雄小沢喜仁渡邊真義矢吹浩
（プロセス技術グループ）微細構造金型を目的とした $\mathrm{Ni} / \mathrm{PTFE}$ 複合めっきパターンの作製	3／7	東京都江東区	表面技術協会第115回講演大会	三瓶義之
（システム技術グループ） Characteristics of $8 / 6$ SR Generator with a Suppression Register Converter	8／30	$\begin{gathered} \text { スロベニア } \\ \text { ポルトローズ } \end{gathered}$	第12回国際パワーコントロール及びモー ションコントロール会議	高橋淳
SRジェネレータの可変速運転時の効率に関する検討	$\begin{array}{r} 9 / 12 \\ \sim 14 \\ \hline \end{array}$	島根県松江市	第30回日本応用磁気学会学術講演会	高橋淳
（福島技術支援センター）中空シルクニットの開発	6／13	$\begin{aligned} & \text { 多ー杆ル船堀 (東 } \\ & \text { 京都江戸川区) } \\ & \hline \end{aligned}$	繊維学会平成18年度年次大会	伊藤哲司

テー マ	期 日	場 所	発 表 会 名 称	発表者
ポレオレフィン表面への機能 性微粒子の簡便な固定法の開	$3 / 21$	武蔵工業大学 （東京都世田谷 区）	日本セラミックス協会2007年年会	吉田正尚
（会津若松技術支援センター） ソバ付着微生物に対する常圧 過熱水蒸気の殺菌効果	$8 / 30$	神奈川県藤沢市	日本食品科学工学学会	小野和広他

2－4－4 その他の外部発表

テーマ	期 日	場 所	名 称	発表者
（連携支援グループ） いまさら聞けないEMC ～EMC試験でよくある勘違い～	$\begin{gathered} 10 / 19 \\ \sim 20 \end{gathered}$	群馬県前橋市	産業技術連携推進会議情報•電子部会第11回光•電磁環境分科会及び第16回EMC研究会	須藤尚子
（材料技術グループ） 亜鉛めっきのクロムフリー化成処理 GD－0ESによる鉄鋼材料の定量分析	$\begin{gathered} 6 / 1 \\ \sim 6 / 2 \\ 11 / 17 \end{gathered}$	杤木県宇都宮市 宮城県仙台市	産業技術連携推進会議物質工学部会表面技術分科会 産業技術連携推進会議物質工学連合部会東北•北海道地域部会第33回分析研究会	宇津木隆宏
（プロセス技術グループ）肉盛りめっきによる表面補修法 2次元パターン持ち回り試験結果報告 マイクロ構造を持つ微細プラ スチック部品成形技術の開発	$\begin{gathered} 10 / 5 \\ 10 / 19 \\ 11 / 17 \end{gathered}$	岩手県胆沢郡金ヶ崎町山口県山口市沖縄県那覇市	産業技術連携推進会議機械金属部会平成 18年度秋季東北•北海道地域部会平成18年度知的基盤部会計測分科会平成18年度金型研究会	藤井正沸緑川祐二安齋弘樹
（システム技術グループ） 音響解析による清酒もろみの 発酵状態の判定 音響解析による清酒もろみの 発酵状態の判定	$\begin{aligned} & 10 / 16 \\ & 11 / 14 \end{aligned}$	山形県山形市東京都江東区	平成18年度 産業技術連携推進会議 情報•電子部会 秋季東北•北海道地域部会情報•電子部会 第 3 回情報技術分科会音•振動環境研究会	高樋昌 平山和弘
（福島技術支援センター） 繊維加工技術から生まれた融雪装置	2／9	会津若松市	ゆきみらい2007in会津	東瀬慎
（会津若松技術支援センター）生酒貯蔵における香味の劣化防止対策 生酒貯蔵における香味の劣化防止対策 そばの機能性に関する研究竹炭粉の利活用 事例研究「会津身不知柿の素材化」「スギ等針葉樹材への機能性付与による新用途開発」「食卓回りを中心とした食器•家具の開発」 食卓周りを中心とした食器• 家具の開発	$\begin{gathered} 9 / 27 \\ 11 / 14 \\ 11 / 16 \\ 12 / 1 \\ 3 / 2 \\ 3 / 16 \end{gathered}$	東京都 宮城県仙台市 南会津町田村市都路町 会津若松市 京都府京都市	清酒•焼酎製造技術セミナー 日本醸友会仙台支部講演会 南会津地方遊休農地活用推進大会福島県竹炭竹酢液生産者協議会 $\begin{aligned} & \text { ビジネスプランブラッシュアップセミ } \\ & \text { ナー } \end{aligned}$ 陶磁器製造CAE研究会	高橋亮 ＂ 遠藤浩志須藤靖典 河野圭助橋本春夫出羽重遠 山崎智史

2－4－5 展示会等

名 称	実施日	場 所	主 催	参加者
（連携支援グループ※）				
第22回産学官交流のつどい	7／6	$\begin{aligned} & \text { ウエディングエ } \\ & \text { ルティ(福島市) } \end{aligned}$	県電子機械工業会•県中小企業団体中央会	242名
第6回東北産業技術研究交流会	7／6	$\begin{aligned} & \text { ウエディングエ } \\ & \text { ルティ(福島市) } \\ & \hline \end{aligned}$	（独）産業技術総合研究所東北センター	72名

（※他グループ，支援センターとの共同出展を含む））

2－4－6 酵母頒布事業

頒布品名	期 間	頒布本数	担 当
清酒酵母	$\mathrm{H} 18 / 4 \sim \mathrm{H} 19 / 3$	4,633	会津若松技術支援センター

2－4－7 講師派遣事業

（1）講師派遣（講演要請があったもの）

名 称	期日	場 所	主 催	テーマ	職員名	対象数
（材料技術グループ）						
福島県鋳造技術研究会総会	4／21	福島市	福島県鋳造技術研究会	ニッケルフリー高耐食 ステンレス材の開発	栗花信介	36名
日本鉄鋼協会「鋼の諸特性 に対する室素の有効性」研究会	5／23	東京都千代田区	日本鉄鋼協会	$\begin{aligned} & \text { 加圧窒素吸収処理によ } \\ & \text { るニッケルフリーステ } \\ & \text { ンレス鋼の製造 } \end{aligned}$	＂	18名
会津漆器技術後継者訓練校授業	$\begin{aligned} & 7 / 12 \\ & \sim 13 \end{aligned}$	会津若松市	福島県認定会津漆器技術後継者訓練校	漆分析について	渡部修	6名
漆を科学する会 第22回研究発表討論会	7／28	神奈川県川崎市	漆を科学する会	漆の硬化に及ぼす温度 －湿度の関係	＂	58名
富田中学校職場体験	9／5	\|ハイテクプ	郡山市富田中学校	観察体験	光井啓	3名
大槻中学校職場体験	9／14		郡山市大槻中学校		栗花信介	3名
第4回材料のパフォーマン ス研究会	10／6	東京都	腐食防食協会	$\left\lvert\, \begin{aligned} & \mathrm{Ni} \text { Nリーオーステナイ } \\ & \text { ト系ステンレス鋼の開 } \\ & \text { 発 } \end{aligned}\right.$	光井啓	30名
第74回東北支部鋳造技術部会	1／30	福島市	日本鋳造工学会東北支部	鉄合金の介在物による組織制御	＂	30名
（プロセス技術グループ）						
平成 17 年度社団法人全青協東北支部定時総会	6／13	郡山市	福島県青果市場連合会	捨てられている有機物 を有価物に	池田信也	60名
富田中学校職場体験	9／5	\|ハイテクプ	郡山市富田中学校	観察体験	吉田智	2名
大槻中学校職場体験	9／14	＂	郡山市大槻中学校	＂	／	6名
材料評価研究会	3／9	福島市	福島大学	ハイテクプラザにおけ る微細加工	伊藤嘉亮	10名
$\begin{array}{\|l} \hline \text { (システム技術グループ) } \\ \text { 大槻中学校職場体験 } \end{array}$	9／14	$\begin{aligned} & \text { ハイテクプ } \\ & \text { ラザ } \end{aligned}$	郡山市大槻中学校	観察体験	高樋昌	5名
（福島技術支援センター）						
白河地域高等職業訓練校縫製科授業	7／5	白河市	白河地域高等職業訓練センター	繊維の基礎知識	東瀬慎	7名
＂	10／4	＂		＂	／	6名
クリーニング師及び業務従事者講習会	10／26	郡山市	福島県生活衛生営業指導センター	繊維及び繊維製品	三浦文明	92名
外国人研修生受入事業	10／24	田村市	福島県縫製品工業 組合	繊維の基礎知識	野村隆	35名
＂	12／8	白河市	＂	＂	＂	17名
＂	12／18	福島市	＂	＂	＂	29名
／	1／11	喜多方市	／	＂	東瀬慎	10名
／	1／16	白河市	／	＂	＂	11名
＂	$1 / 24$	南相馬市	＂	＂	／	20名
（会津若松技術支援やタター）						
会津漆器技術後継者訓練校	$\begin{gathered} 4 / 17 \\ 18 \end{gathered}$	会津若松技術支援セン ター	会津漆器協同組合	製図1，2	山崎智史	10名

名 称	期日	場 所	主 催	テーマ	職員名	対象数
会津杜氏後継者養成事業	$\begin{gathered} 8 / 23 \\ \sim 24 \end{gathered}$	会津若松技術支援セン ター	会津杜氏組合	酒造全般	鈴木賢二高橋亮	130名
／	10／10	॥	＂	きき酒勉強会	＂	25名
日本食品保全研究会講演会	9／8	東京都	旦本食品保全研究	常圧過熱水蒸気を利用 した食品の微生物制御	小野和広	100名

（2）委員（委員として招聘のあったもの）

名 称	期日	場 所	主 催	テーマ	職員名	対象数
過疎•中山間地域経営戦略会津地方会議プロジェクト会議	9／1	会津若松市	会津地方振興局	重点推進分野事業計画，意見交換会予定，企画調整事業等	河野圭助	20名
＂	10／11	＂	＂	川	＂	18名
I	1／24	II	II	過疎•中山間地域経営戦略会津地方会議担当者会議	＂	21名
いなか道活性化共同体研修会	$\begin{aligned} & 6 / 27 \\ & \sim 28 \end{aligned}$	浪江町	いなか道共同体	エゴマ粕を使った新商品開発	河野圭助 渡部修（材 料技術 G ）	37名
地域食料産業クラスター形成促進事業委員会	6／8	福島市	食品産業協議会	$\begin{aligned} & \text { クラスター設立検討部 } \\ & \text { 会 } \end{aligned}$	河野圭助	30名
I	9／15	II	II	クラスター協議形成に向けた協議について	I	22名
／	12／14	／	／	クラスター設立，協議会規約改定の検討	／	17名
機能性農産物プロジェクト チーム成果説明•発表会	10／16	福島市	農林水産部園芸振興グループ	平成18年度加工技術開発の実施状況	II	16名
機能性農産物プロジェクト チーム検討会	12／15	会津若松技術支援セン ター	II	農産物の加工技術研究成果発表会・コンペ	II	42名
／	3／19	福島市	／	平成19年度事業計画に ついて	II	12名
県産品振興推進会議	11／28	福島市	県産品振興グルー プ	第1回検討部会•加工食品部門	II	21名
				第2回検討部会•工芸 品部門	竹内克己	8名
会津ブランドものづくり フェア 第1回実行委員会幹事会	7／21	会津若松市	会津ブランドもの づくりフェア実行委員会	概要，企画展示，出展，計画	大堀俊一	18名
第2回実行委員会幹事会	10／12	I／	II	企画展示，出展，要項， スケジュール	II	19名
第3回実行委員会幹事会	1／19	II	II	事業報告•収支決算	／	30名
伝統的工芸品産業功労者賲賞産地選考委員会	9／19	浪江町	大堀相馬協同組合	功労者の	I	9名
起業家支援事業調査 第1回ワーキンググルー プ会議	10／26	会津美里町	会津美里町	事業内容説明，イン キュベーションコアの支援策，産学官連携	山崎智史	9名
(プ会議	12／15	II	＂	課題と対策	大堀俊一	12名
第3回ワーキンググルー	1／25	／	I	AHICの支援と具体的ア イディア	II	10名
第4回ワーキンググル プ会議	2／26	II	I	若手陶芸家との意見交換，支援方策	I	14名
JAPANブランド育成支援事業第1回実行委員会	7／21	会津若松市	会津若松商工会議所	事業概要，要綱制定， 役亘選任 予算審議	大堀俊一	15名
第1回実行委員会 第2回実行委員会	1／12	会津若松市 I	所 II	役員選任，予算審議事業経過報告，国内外展示会出展等事業実施，収支予算執行状況	疗	15名
福島県会津漆器考案保護審議会	6／12	II	／	役員会•総会	竹内克己	13名
産学連携型ものづくり支援						
事業「會’ s NEXT」 第2回商品全两梌討会	$\begin{aligned} & 5 / 27 \\ & \sim 28 \end{aligned}$	東京	会津若松市	第2回商品企画検討会	II	23名
第2回商品企画検討会	~ 28					
第1回試作検討会	6／15	会津若松市	／	第1回試作検討会	／	23名
第2回試作検討会	7／14	＂	＂	第2回試作検討会	＂	16名
第3回試作検討会	9／5	＂	＂	第3回試作検討会	＂	21名
第4回試作検討会	10／5	＂	＂	第4回試作検討会	＂	22名
勉強会	11／30	東京	II	発表展示会	／	3名

名 称	期日	場 所	主 催	テーマ	職員名	対象数
勉強会	1／9， 11	会津若松市	会津若松市	次年度の事業計画	竹内克己	8名
会津地域経済活性化検討委員会 第3回検討会	2／23	会津若松市	会津若松商工会議所	F／S事業報告，収支決算	大堀俊一	19名
第3回勉強会	1／18	II	II	地域資源活用型内発的発展モデル	桑田彰大堀俊一	14名
第4回勉強会	2／5	I	II	産学官連携ベンチャー新事業創出支援	大堀俊一	21名
「会津本郷焼新ブランド確						
立支援事業」•新商品開発研究部会	9／15	会津美里町	会津本郷商工会	事業計画，事業予算	竹内克己大堀俊	14名
第1回実行委員会第2回新商品開発研究部会	12／22	II	II	各窯元の試作品，部会 の活動スケジュール	\％	10名
第3回新商品開発研究部会	2／2	II	／	試作販売へ向けての試作品	II	10名
第5回新商品開発研究部会	3／26	II	II	出品の進捗状況，会場陳列内容確認	竹内克己	10名
ふるさと産品			（財）	食品加工技術	河野圭助	4名
ナー」	2／22	白河市	くしま	$\begin{aligned} & \text { ラベル・パッケージデ } \\ & \text { ザイン, ネーミング } \end{aligned}$	竹内克己	3名
農産物加工試験成績等検討会	3／22	郡山市	福島県農業総合セ ンター	平成18年度農産物加工試験研究報告会	河野圭助	11名
会津工業高等学校「目指せ スペシャリスト」 第1回運営指導委員会	8／23	会津若松市	福島県教育委員会	平成 17 年度事業評価，平成18年度計画	大堀俊一	21名
第2回運営指導委員会	3／26	II	II	平成18年度事業報告， 平成19年度事業計画	II	19名
日本醸友会仙台支部常議員会	4／21	宮城県仙台市	日本醸友会仙台支部	総会および平成18年度講演会の内容について	鈴木賢二	17名
II	11／14	II	I／	平成18年度講演会運営他	／	17名
先端技術を活用した農林水産研究高度化事業（地場産小麦）に係る研究打ち合わ せ会議	9／13	郡山市	福島県農林水産部	平成18年度先端技術を活用した農林水産研究高度化事業（地場産小麦）に係る研究打ち合 わせ	遠藤浩志	15名
会津若松市ダイズ産地を育 てる会	3／20	会津若松市	会津若松市ダイズ産地を育てる会	大豆生産意見交換会	II	30名
喜多方地方大豆加工セミ ナー	12／1	喜多方市	会津農林事務所	味噌づくりの基礎とポ イント	II	20名
／	3／6， 8	I	II	味噌づくり実習（製趜 から仕込みまで）	遠藤浩志小野和広	15名
（いわき技術支援センター） シニアアドバイザーセン ター連絡協議会	7／4	いわき市	福島県商工会連合会	第1回連絡協議会（事業概要説明）	大越正弘	

（3）委員（審査員として要請のあったもの）

名 称	期日	場 所	主 催	テーマ	職員名	対象数
（会津若松技術支援センター）						
南部杜氏自醸酒鑑評会	1／18	岩手県花巻市	（社）南部杜氏協会	酒質審査	鈴木賢二	604点
高品質清酒研究会全国新酒鑑評会出品酒審査	5／10	会津若松技術支援セン ター	高品質清酒研究会	＂	鈴木賢二高橋亮	23点
福島県観光みやげ品推薦審査会	2／2	福島市	（財）物産プラザふ くしま	食品•民工芸品の審査	竹内克己	54点
ブランド認証ロゴマーク等事業コンペ審查	1／19	＂	福島県	ブランド認証の審査	＂	20点

名 称	期日	場 所	主 催	テーマ	職員名	対象数
第6回「会津 史•季•彩•再」地域産品ブランド認定審査委員会	6／20	＂	会津ブランド推進委員会	ブランド認定審査	河野圭助竹内克己	30点
青森県清酒鑑評会	$\begin{gathered} 9 / 12 \\ \sim 13 \end{gathered}$	青森県青森市	青森県酒造組合	酒質審査	鈴木賢二	121点
福島県清酒鑑評会	9／14	福島市	福島県酒造組合	II	鈴木賢二高橋亮	150点
宮城県清酒鑑評会	9／15	宮城県仙台市	宮城県酒造組合	II	高橋亮	142点
平成18年度農産加工者交流 フェスタ	9／16	郡山市	福島県農業総合セ ンター	加工食品審査	河野圭助	108点
東北清酒鑑評会（予審）	$10 / 2$ ~ 4	宮城県仙台市	仙台国税局	酒質審査	高橋亮	483点
東北清酒鑑評会（決審）	10／6	II	II	／I	鈴木賢二	248点
優良ふるさと食品コンクー ル出展審査会	10／12	福島市	福島県中小企業団体中央会	加工食品審査	河野圭助	2点
福島県味噌予備審査会	10／23	安達町	味噌醤油工業協同組合	味噌予備審査	遠藤浩志	23点
第 6 回ふくしま特産品コン クール	11／17	福島市	（財）物産プラザふ くしま	総合審査	桑田彰	117点
I	11／17	／	／	食品部門	小野和広	72点
＂	11／17	II	II	工芸•雑貨部門	竹内克己	45点
福島県新酒鑑評会	$\begin{gathered} 3 / 15 \\ \sim 16 \end{gathered}$	I	福島県酒造組合	酒質審査及び講評	鈴木賢二高橋亮	179点
山形県新酒鑑評会	$\begin{aligned} & 3 / 22 \\ & \sim 23 \end{aligned}$	山形県山形市	山形県酒造組合	審査及び講評	鈴木賢二	376点
平成18年度会津若松市発明工夫展審査会	9／19	会津若松市	会津若松市	作品審査	桑田彰	115点
第8回ふくしまユニバーサ \|ルデザインフェア	9／22	郡山市	ふくしまユニバー サルデザインフェ ア実行委員会	デザイン賞審査	出羽重遠	93点
県産ソバ優良系統育成事業 における試食検討会	11／21	会津若松市	研究開発グループ	そばの官能検査	遠藤浩志小野和広	4点
（いわき技術支援センター）						
インキュベートルーム入居者審査会	6／1	いわき産業会館（いわ き市）	いわき市	いわきパイロットオフイス・イン キュベートルーム入居者審査	大越正弘	12名
いわきビジネスアイデアプ ランコンテスト審査会	6／22	II	＂	事業概要の説明	加藤和裕	50名
インキェベートルーム入居者審査会	8／22	／	I	いわきパイロットオフィス・イン キュベートルーム入居者審査	大越正弘	12名
いわきビジネスアイデアプ ランコンテスト審査会	9／20	II	II	審査項目と審査基準の協議	I	50名
いわき発ものづくりコンテ スト審査会	10／20	いわき市総合保健福祉 センター （いわき市）	I	事業概要の説明	II	10名
いわきビジネスアイデアプ ランコンテスト審査会	10／25	いわき産業会館（いわ き市） いわき市中	I	応募作品の審査	＂	50名
／	11／11	央台公民館 （いわき市）	／	I	／	50名

（4）その他の派遣事業

2－5 試験，機器開放事業

	大 項 目	中 項 目	県北	県中	県南	会津	南会津	相双	いわき	県外	中小企業	大企業	その他	合計
	工芸関係	陶磁器類の試験，衛生試験，デザイン等	9	23		54	1	2		12	101			101
	食品関係	定性分析，定量分析，微生物分析		9	2	49			1		60		1	61
津	物性試験	熱特性	2			4					4	2		6
若	分 析	形態観察				4					4			4
松		表面分析				3					3			3
技		化学物構造解析	1			1					2			2
術		クロマトグラフ分析												0
援		環境分析		1		12					13			13
セ		小 計	12	33	2	127	1	2	1	12	187	2	1	190
ン	その他	試料調整		1	1	28			1	4	34		1	35
タ		写真の調整												0
		成績書の副本												0
		小 計	0	1	1	28	0	0	1	4	34	0	1	35
		合 計	12	34	3	155	1	2	2	16	221	2	2	225

2－5－2 施設の開放事業

	大項目	使用単位	項 目	県北	県中	県南	会津	南会津	相双	いわき	県外	中小	大企業	その他	合計
	施 設	回	多目的ホール	55	10	1						2		64	66
			テクノホール	1										1	1
			研修室	22	2						2	2		24	26
			計	78	12	1	0	0	0	0	2	4	0	89	93
		月	技術開発室	32	17		11					39		21	60
			計	32	17	0	11	0	0	0	0	39	0	21	60
		時間	電波暗室	286	215	47			25	69	55	320	374	3	697
			無響室	184	12						172	103	234	31	368
			計	470	227	47	0	0	25	69	227	423	608	34	1065
	附属設備	回	音響設備	60	9	1					1	2		69	71
	郡		映像設備	11	2	1					2	3		13	16
	山		移動調整卓•電機供給設備	12	1	1					3	4		13	17
			計	83	12	3	0	0	0	0	6	9	0	95	104
		時間	電波暗室附属施設	530	362	52			30	130	73	490	681	6	1177
			無響室附属施設	181	12						135	103	225		328
			計	711	374	52	0	0	30	130	208	593	906	6	1505

※「1回」とは，午前，午後，または夜間のそれぞれについて使用した場合を示す。全日は3回に相当する。

2－5－3 設備の開放事業（総合計36，570時間）

	大項目	中 項 目	項 目	県北	県中	県南	会津	南会津	相双	いわき	県外	中小	大企業	その他	合計
	加工関係	機械加工機器類	微細放電加工機（C11EX／FP35E）		5							5			5
			ラックソー	3								3			
		材料加工機器類	小 計	3	5							8			8
			ICPエッチング装置（EIS－700SI）	3							5	8			8
			ダイシングソー（DAD522）	7	7						13	27			27
			真空熱処理炬（PVSGgr 20／20）	4									4		4
			酸素アッシング装置（PX－250HG）			1						1			1
			研磨機（フェニックス4000）	11	191	105						69	220	18	307
			試料切断機（HS－45 A I I ）	12	70	16						23	63	12	98
			真空乾燥装置（DP－63）		5						2	7			7
			材料乾燥炉			7							7		7
			試料押込装置	7	34							16	25		41
			サンドブラスト装置		3						24	27			27
			電解研磨装置（EP0－431）	1									1		1
			小型電気炉（FM－37）		78	26						99	5		104
			乾燥炬（DN－63）			1							1		1
			プラスチック材料調整機		3								3		3
			小 計	45	391	156	0	0	0	0	44	277	329	30	636
			加工関係の計	48	396	156	0	0	0	0	44	285	329	30	644
	計測関係	物性試験幾器類	万能材料試験機（UH－F1000 k NIR）	2	11	1	3					6	11		17
			キャピログラフ1C（SH－2T）		3					8		8	3		11
			粘弾性測定装置（RAA）			3						3			3
			蛍光エックス線微小部獏厚計（JSX－3600M）	72	298	32	1		5	9	3	305	115		420
			精密万能試験機（ $\mathrm{AG}^{\text {－}}$－10 k NE）	59	18	15	9					90	11		101
			自記分光光度計（U－4000）	8	2						3	11	2		13
			レーザー回折式粒度分布測定装置（LMS－24）	5	6		3			2	1	8	9		17
			摩擦摩耗試験機（TRIBOMETER）	24	3	13	12				7	26	21	12	59
			万能材料試験機（UH－100 k NIR）	31	44	36			3	26	3	94	44	5	143
			スクラッチ試験機（CSR－01）								4	4			4
			超微小ダイナミック硬度計（DUH－200）		15							5	6	4	15
			熱刺激電流測定装置（No．650）								15	3	12		15
			体圧分布測定システム	4							4		6	2	8
			エリプソメーター（ESM－1A）								18	4	14		18
			万能衝撃試験機	1									1		
			クリープ試験機	893									893		893
			接触角計		2							2			2
			ガス置換型粉体密度測定装置		17							17			17
			ロックウェルレ硬度計（ATK－F2000A）		6	9						15			15
			ロックウェル硬度試験機（DRH－FA）	1	2		5					2	6		8
			振動試料型磁力計（VSM－P7－15）			10						10			10
			分光測色計		3								3		3
			マイクロビッカーズ硬度計	48	56	26				2		112	13	7	132

	大項目	中 項 目	項	目	県北	県中	県南	会津	南会津	相双	いわき	県外	中小	大企業	の他	合計
八	ものづくり試作開発支援センター															
イ	加工関係	機械加工機器類	電子線描画装置									2	2			2
テ			ワイヤーボンダ			2							2			2
ク		小 計				2						2	4			4
	計測関係もの電子機器類 ${ }^{\text {熱画像解析装置 }}$もの備使用の合計					12	6	3		9			21	9		30
君					0	14	6	3	0	9	0	2	25	9	0	34
	ものづくり試作開発支援センター設備使用の合計															
山	加工関係の合計				48	398	156	0	0	0	0	46	289	329	30	648
	計測関係の合計				12039	7700	1497	463	29	674	283	1387	10095	13855	122	24072
			合 計		12087	8098	1653	463	29	674	283	1433	10384	14184	152	24720

$\left\|\begin{array}{l} \text { 若 } \\ \text { 松 } \end{array}\right\|$	大項目	中項目	項目	県北	県中	県南	会津	南会津	相双	いわき	県外	中小	大企業	その他	合計
	加工関係	機械加工機類	小型NCルータ（15ZXS－11－3－1005F）				19					19			19
			システムパネルソー（SZV－6000Z）				2					2			2
			レーザー加工機				1					1			1
			手押鉋•自動鉋兼用機				2					2			2
			オートバンドソー				27					27			27
			油圧プレス				17					17			17

会	大項目	中項目	項目	県北	県中	県南	会津	南会津	相双	いわき	県外	中小	大企業	その他	合計
	加工関係	機械加工機類	系鋸盤				6					6			6
			小 計	0	0	0	74	0	0	0	0	74	0	0	74
		材料加工機類	接着装置（P20－B）				4					4			4
			醸造用小型精米機	2								2			2
			低温除湿乾燥装置（ IHR －06－4）		8							8			8
			中型低温恒温恒湿器（ $\mu-404 \mathrm{R}$ ）				144					144			144
			高速冷却遠心機	1			1					2			2
			小型高温高圧調理殺菌機LFS－CR75）			2						2			2
			クラッシャー（フリッチュP－1）					1					1		1
			高速冷却遠心機（CR21G）				4					4			4
			大豆脱皮機				1					1			1
			真空谏結乾燥機（TFD－550）	17	27		44					76		12	88
			遊星ボールミル					3					3		3
			粉䂽機（JC－5）	4								4			4
			自動真空包装機				14					14			14
			電動タタラ製作機				6					6			6
			攪汼擂潰機				11	6				11	6		17
			電気炉				24					24			24
			自動瑪瑙乿鉢				4	5				4	5		9
			オートクレーブ				1					1			
			小 計	24	35	2	258	15	0	0	0	307	15	12	334
			加工関係の合計	24	35	2	332	15	0	0	0	381	15	12	408
	計測関係	物性試験機器類	オートグラフ（AG－2000E）	0	8	0	14	0	0	0	0	3	19	0	22
			変角色彩計（DDC－3000）						1			1			
			小 計	0	8	0	14	0	1	0	0	4	19	0	23
		環境試験機器類	促進耐候性試験機（DPWL－5R）				30				30	30	30		60
			卓上型クリーンベンチ				1					1			
			小 計	0	0	0	31	0	0	0	30	31	30	0	61
		電子機器類	CG操作講習システム				18					18			18
			カッティングプロッター				1					1			1
			小 計	0	0	0	19	0	0	0	0	19	0	0	19
		分析機器類	電子顕微鏡（JSM－5900LV）	1		5	11				2	1	18		19
			フーリエ変換赤外分光光度計（Nexus470）				5					2	2	1	5
			マイクロフォーカスX線検查装置（SFX－100特）		23	3	63					58	31		89
			エックス線回折装置（X＇PERT－PR0）				13				3	3	13		16
			熱分析装（TG8120）								10	10			10
			実体顕微鏡（SMZ1500）				3					3			3
			小 計	1	23	8	95	0	0	0	15	77	64	1	142
			計測関係の合計	1	31	8	159	0	1	0	45	131	113	1	245
	合 計			25	66	10	491	15	1	0	45	512	128	13	653

	大項目	中項目	項 目	県北	県中	県南	会津	南会津	相双	いわき	県外	中小	大企業	その他	合計
	加工関係	機械加工機器類	炭酸ガスレーザー加工機							1	9	3	1	6	10
			旋盤							14	3		17		17
			小 計	0	0	0	0	0	0	15	12	3	18	6	27
		材料加工機器類	試料研磿盤（7ェニックス4000）							2		1	1		2
			湿式高速試料切断機							11		11			11
			マグネトロンスパッタリング装置			1			3	10		7	7		14
			電気炉（EPTS－312KX）							5		5			5
			小 計	0	0	1	0	0	3	28	0	24	8	0	32
			加工関係の計	0	0	1	0	0	3	43	12	27	26	6	59
	計測関係	物性試験機器類	材料試験機計測制御装置（UH－1型）	3	0	0	0		0	8	2	3	10	0	13
			分光測色計						3	2		5			5
			万能試験機（1000kNA）						2	22	2	12	14		26
			高温顕微硬度計								27		27		27
			万能試験機（100kNA）						1	78	5	37	47		84
					7				6	38	2	28	25		53
			動歪解析装置							1		1			1
			衝撃試験機	3									3		3
			光沢計							3			3		3
			小 計	6	7				12	152	38	86	129		215
		寸法•形状	三次元座标測定機（マイイロコードRV304）		6				16	16		30	8		38
		測定機器類	モアレ3 Dカメラ							2		2			2
			真円度測定機（RA－736）		3					54		3	54		57
			表面粗さ形状測定機（SV624）		3				2	75		69	11		80
			輪郭形状測定機（2600C－22）		66				18	50	4	120	18		138
			万能測定顕微鏡						1	8		9			9
			万能投影機		1					3		3	1		4
			小 計		79				37	208	4	236	92		328
		分析機器類				5			42	91		68	70		138
			ICP発光分光分析装置（SPS4000）		1				5	14		12	6	2	20
			蛍光エックス線分析装置（波長分散型）		30				27	145	7	199	10		209
			走査型共焦点レーザー顕微鏡（0LS1000）						2			2			2
			炭素硫黄同時分析装置（CS－400－SC－444）		3					1	16	19	1		20
			フーリエ変換赤外分光光度計						9	10		12	7		19
			金属顕微鏡（PMG3－114U）						3	8	1	8	4		12

$\begin{aligned} & \text { い } \\ & \text { わ } \\ & \text { き } \\ & \text { 技 } \\ & \text { 術 } \\ & \text { 支 } \\ & \text { 援 } \\ & \text { セ } \\ & \text { ン } \\ & \text { タ } \end{aligned}$	大項目	$\begin{gathered} \hline \text { 中項目 } \\ \hline \text { 分析機器類 } \end{gathered}$	項 目	県北	県中	県南	会津	南会津	相双	いわき	県外	中小	大企業	その他	合計
	計測関係				3					6	1	8	2		10
			エックス線回折装置（RAD－IIB）							20			20		20
			分光光度計						26	1		27			27
			超音波探傷機							1			1		1
			p Hメータ		1				1			1	1		2
			精密直示天科							2		2			2
			小 計		38	5			115	299	25	358	122	2	482
		環境試験機器類	恒温恒湿器						360	827		1187			1187
			塩水噴霧試験機		240				48	2089	152	1757	360	412	2529
			低温恒温槽	240						244		484			484
			キャス試験機				250					250			250
			小 計	240	240		250		408	3160	152	3678	360	412	4450
		電子機器類	ビデオマイクロスコープ（0VM1000NM）		1				1	14		3	13		16
			小 計		1				1	14		3	13		16
			計測関係の計	246	365	5	250	0	573	3833	219	4361	716	414	5491
	合 計			246	365	6	250	0	576	3876	231	4388	742	420	5550
設備使用総合計				16768	8686	1887	1206	44	1269	4159	2551｜｜	18628	17354	588	36570

1 依頼試験実施事業

	単位：件数			
	H16年度	H17年度	H18年度	
ハイテクプラザ（郡山）	3,234	4,106	5,112	
福島技術支援センター	1,150	687	885	
会津若松技術支援センター	379	355	225	
いわき技術支援センター	1,091	1,225	1,153	
計	5,854	6,373	7,375	

2 施設開放事業

	H16年度	H17年度	H18年度
多目的ホール・テクハホール・研修室（回）	131	143	93
電波暗室•無響音室（時間）	880	914	1,065
技術開発室（月）	60	51	60
多目的ホール等，付属設備（回）	196	212	104
電波暗室等，付属設備（時間）	824	910	1,505
福島•会津・いわきき施設関係（時間）	1,743	1,790	1,977

＊1回とは，午前，午後，夜間のそれぞれを示す。全日は3回に相当する。
3 設備•機器開放事業

	単位：時間 単位：時間		
	H16年度	H17年度	H18年度
ハイテクプラザ（郡山）	18,326	20,669	24,720
福島技術支援センター	8,064	5,454	5,647
会津若松技術支援センター	749	1,047	653
いわき技術支援センター	4,972	6,150	5,550
計	32,111	33,320	36,570

4 技術相談指導事業

	単位：件数 単位：件数		
	H16年度	H17年度	H18年度
ハイテクプラザ（郡山）	1,826	1,875	2,541
福島技術支援センター	356	468	480
会津若松技術支援センター	257	420	399
Wわき技術支援センター	253	418	477
計	2,692	3,181	3,897
※うち，ホームページ技術相談コーナーからの相談	127	138	120

1 依頼試験実施事業

ロいわき技術支援センター－会津若松技術支援センター ロ福島技術支援センター－ハイテクプラザ（郡山）

3 設備•機器開放事業

4 技術相談事業

参考資料2 平成18年度福島県ハイテクプラザ利用状況（業種，目的，地方の別）

※業種の内訳

〈電子〉	電子部品・デバイス製造業
〈電気〉	電気機械器具製造業
〈機械〉	一般機械器具製造業
〈情報〉	情報通信機械器具製造業
〈金属〉	金属製品製造業
〈精密〉	精密機械器具製造業
〈プラ〉	プラスチック製品製造業
〈輸送〉	輸送用機械器具製造業
〈鉄鋼〉	鉄鋼業
〈飲料〉	食料品製造業
〈食料〉	飲料・たばこ・飼料製造業
〈繊維〉	繊維工業（衣服，その他 の繊維製品を除く）
〈衣服〉	衣服・その他の繊維製品製造業

〈化学〉 化学工業
〈ゴム〉 ゴム製品製造業
〈非鉄〉 非鉄金属製造業
〈窯業〉 窯業•土石製品製造業
〈木材〉 木材•木製品製造業（家具を除く）
〈漆器〉 漆器製造業
〈家具〉 家具•装備品製造業
〈紙〉 パルプ・紙•紙加工品製造業
〈印刷〉 印刷•同関連業
〈石油〉 石油製品•石炭製品製造業
〈その他〉 パルプ・紙•紙加エ品製造業，その他の製造業，電気・ガス熱供給•水道業
運輸業，卸売•小壳業，不動産業

〈非製造業〉建設業情報通信業，医療•福祉，教育，サービス業，公務，分類不能の産業

2－3 地方別技術相談件数 $\quad 2-4$ 地方別依頼試験件数 $2-5$ 地方別設備使用件数

2－6 人材育成事業

2－6－1 技術指導員養成研修（全2名）

研修名称	研修者名	研修期間	研 修 場 所
（プロセス技術グループ） 大学•研究機関等派遣事業	三瓶義之	$11 / 13 \sim 12 / 8$	信州大学工学部
（システム技術グループ） データ分析基礎講座	吉田英一	$11 / 9 ~ 10$	自治研修センター

2－6－2 その他の職員研修

研修名称	研修者名	研修日程	研修場所
（企画管理グループ）			
平成18年度知的財産権研修	笹山淑弘菅原康則長澤浩	6／6～9	東京都
「2006年版中小企業白書」説明会		6／12	仙台市
食と農の交流フェア	鈴木雅千渡辺真	6／14	農業総合センター（郡山市）
甲種防火管理新規講習	菅原康則	$6 / 15 \sim 16$	郡山市
知的財産戦略セミナー	笹山淑弘	6／29	コラッセふくしま（福島市）
＂	＂	7／26	＂
＂	＂	8／10	＂
＂	＂	8／24	＂
IPDLセミナー 技術移転に係わる目利き人材育成研修会（基礎 コース）	市川俊基	10／20	（独）科学技術振興機構（東京都）
		11／8～9	
Jdrem II 無料研修会	高橋幹雄市川俊基	2／7	東京ビッグサイト（東京都）
FC EXPO 2007 第3回国際水素•燃料電池展	${ }^{\prime \prime}$	2／8	大田区産業プラザ (東京都)
第11回おおた工業フェア	菅原康則長澤浩高橋幹雄笹山淑弘	$2 / 15 \sim 16$	
第32回国際食品•飲料展（FO0DEXJAPAN2007）		$3 / 15 \sim 16$	幕張メッセ（千葉市）
著作権セミナー		$3 / 27 \sim 28$	大阪府立中央図書館（大阪市）
（連携支援グループ）			
ものづくり産業セミナー	小川德裕橋本真	4／18	福島市
日本熱電学会 サーモエレクトロンユーザーズフォーラム2006	橋本政靖	5／29	東京都
	鈴木雅千	6／9	„
環境保全•共生科学技術研究会	橋本真	6／16	郡山市
	橋本政靖		
医療福祉機器等関連新事業創出研究会	小川德裕	6／23	＂
医楽品等製造管理者講習会•医療福祉機器研究会	／	7／18	＂
電子自治体推進セミナー	太田悟	$7 / 27$$8 / 1$	福島市
ファイリングマネジメント講座	＂		
公共マーケティング講座	橋本真	$\begin{gathered} 8 / 7 \sim 8 \\ 8 / 22 \sim 23 \end{gathered}$	神奈川県＂
日本熱電学会	橋本政靖		
ものづくりセミナー	$\underset{\text { 小川德裕 }}{\text { 橋本真 }}$	8／25	郡山市
日本分光学会赤外ラマン分光部講習会2006分析展	鈴木雅千	8／30～31	東京都
マイクロソフトセミナー	太田悟	$8 / 29 \sim 9 / 1$	$\begin{aligned} & \text { 横浜市 } \\ & \text { 郡山市 } \end{aligned}$
FCSソリューションセミナー	＂	10／18	
ネットワーク・セキュリティーセミナー	須藤尚子	11／10	郡山市
電子自治体推進セミナー	太田悟	11／13	
福島県新エネルギーセミナー	須藤尚子	11／15	＂
島津最新技術セミナー2006in郡山	鈴木雅千	$\begin{aligned} & 11 / 15 \\ & 11 / 16 \end{aligned}$	＂
サーモエレクトロンユーザーズフォーラム2006	＂		東京都＂
中小企業活性化支援会議情報化学入門講座	橋本真鈴木雅千	$11 / 21$ $12 / 16$	
情報化学入門講座	鈴木雅千	12／16	

研修名称	研修者名	研修日程	研修場所
半導体クラスターセミナー	小川德裕	12／26	会津若松市
中小企業活性化支援シンポジウム	橋本真	1／18	東京都
VCCI2006年度技術説明会	須藤尚子	1／26	＂
情報セキュリティーセミナー	太田悟	2／1	郡山市
NET\＆COM2007	＂	2／8	東京都
ゆきみらいinあいづ2007	橋本政靖	2／9	会津若松市
機能性材料•製造プロセス研究会	小川德裕	2／15	福島市
半導体クラスターセミナーinKORIYAMA	，	2／19	郡山市
技術移転に係わる目利き人材育成研修	＂	2／23	東京都
抵抗測定の実際と材料評価技術	長尾伸久	2／23	＂
腐食防食協会技術セミナー	杉内重夫	2／28	東京都
ビジネスプランブラシュアップセミナー	小川德裕	3／2	郡山市
VLAC技能試験報告会	須藤尚子	3／8	東京都
奥羽大学歯学研究科教員研修	橋本政靖	3／15	郡山市
中小企業産学連携推進フォーラム	橋本真	3／20	東京都
日本金属学会春期大会	橋本政靖	$3 / 28 \sim 29$	千葉県
日本熱電学会学術講演会	＂	$3 / 28 \sim 29$	神奈川県
（材料技術グループ）			
日本鉄鋼協会「鋼の諸特性に対する窒素の有効	栗花信介	5／23	日本鉄鋼協会（東京都）
性」第7回研爸会 福島県知的財産戦略セミナー（第1回）	／	6／29	コラッセふくしま（福島市）
			ホテルメトロポリタン山形（山
国際高分子加工学会第22回年次大会	菊地時雄	$7 / 2 \sim 5$	形県）
年	長谷川隆	$7 / 4 \sim 6$	＂
福島県知的財産戦略セミナー（第2回）	栗花信介	7／13	コラッセふくしま（福島市）
＂（第3回）	＂	7／26	"
＂（第4回）	＂	8／10	＂
＂（第5回）	＂	8／24	
金属の腐食メカニズムと損傷解析•寿命予測セシー	渡部修	8／28	きゅりあん（東京都）
日本鉄鋼協会2006年秋季大会	栗花信介	$9 / 16 \sim 18$	新潟大学（新潟県）
高分子の結晶化セミナー	長谷川隆	9／29	きゅりあん（東京都）
ESCAユーザーズミーティング	光井啓	9／29	科学技術館（東京都）
第42回表面科学基礎講座	＂	$10 / 4 \sim 5$	大阪大学（大阪府）
日本鉄鋼協会「鋼の諸特性に対する窒素の有効性」第8回研究会	栗花信介	10／20～21	九州大学（福岡県）
第19回べにばなコンファランス	長谷川隆	10／25～26	東北大学（仙台市）
第11回高分子分析討論会	内田達也	10／26～27	名古屋市工業研究所（愛知県）
第24回マイクロアナリシス研究懇談会	栗花信介	$11 / 9 \sim 10$	島津製作所（東京都）
マテリアルライフ学会講演会	長谷川隆	11／14～15	朝日信用金庫船堀センター（東京都）
第190回西山記念講座	栗花信介 光井攵	11／22	工学院大学（東京都）
第32回腐食防食入門講座	光井啓	$11 / 27 \sim 28$	きゅりあん（東京都）
第14回新粉末冶金入門講座	栗花信介	$11 / 27 \sim 28$	東京都立産業技術センター（東京都）
第167回電子線マイクロアナリシス講習会	光井啓	$12 / 7 \sim 8$	島津製作所（神奈川県）
日本鉄鋼協会東北支部湯川記念講演会	栗花信介	12／18	東北大学金属材料研究所（仙台市）
高分子材料開発のための俯瞰的シンポジウム	長谷川隆	$1 / 15 \sim 16$	東京大学（東京都）
日本鉄鋼協会「鋼の諸特性に対する窒素の有効性」第9回研究会	栗花信介	1／24	日本鉄鋼協会（東京都）
第253回塑性加工シンポジウム	光井啓	1／25	仙台市情報産業プラザ（仙台市）
東北ポリマー懇話会	渡部修	1／26	東北大学多元物質科学研究所 （仙台市）
いわき技術セミナー	植松崇内田達也	1／31	いわき技術支援センター
ゴム協会主催技術講演会	長谷川隆	2／2	ハーネル仙台（仙台市）

研修名称	研修者名	研修日程	研修場所
わき技術セミナー	内田達也	2／2	わき技術支援センター
平成18年度第4回熱処理技術セミナー	栗花信介	$2 / 8 \sim 9$	東京工業大学（東京都）
ライトメタル表面技術部会第271回例会	宇津木隆宏	2／15	東京都立産業技術センター（東京都）
第5回高分子ナノテクノロジー研究会講座第42回技術セミナー	内田達也植松崇	$2 / 22$ $2 / 28$	東京ビッグサイト（東京都）東京理科大学（東京都）
第34回高分子分析技術講習会		$3 / 5 \sim 6$	工学院大学（東京都）
表面技術協会第115回講演大会	宇津木隆宏	$3 / 7 \sim 9$	芝浦工業大学（東京都）
日本鉄鋼協会第153回春季大会	光井啓	$3 / 27 \sim 29$	千葉工業大学（千葉県）
（プロセス技術グループ）			
センサエキスポジャパン2006	伊藤嘉亮	$4 / 7$	東京ビッグサイト（東京都）
第5回国際バイオEXP0	本田和夫	5／17	
第5回国際バイオEXP0フォーラム	池田信也	5／19	＂
第11回国際食品素材／添加物展	大野正博	5／30	
タンパク3000プロジェ外第5回産学連携フォーラム	／	6／30	仙台国際セン
第41回エレクトロニクス実装学会セミナー	安齋弘樹	$7 / 4 \sim 7 / 7$	かながわサイエンスパーク（川崎市）
	三瓶義之	7／10	国立オリンピック記念青少年総合センター
精密計測技術講習会 MEMSパークコンソーシアム／グリーンプロセス コンソーシアム連携シンポジウム	小野裕道	$7 / 20 \sim 7 / 21$	ミツトヨ計測学院（川崎市）
	伊藤嘉亮	9／14	（独）産総研東北センター（仙台市）
非破壊試験講習会	佐藤善久	$9 / 7 \sim 8$	宮城県産業技術総合センター （仙台市）
生物工学会大会	大野正博	$9 / 11 \sim 13$	大阪大学（大阪府）
びわ湖環境ビジネスメッセ2006	吉田智	$\begin{gathered} 10 / 26 \sim \\ 10 / 27 \end{gathered}$	滋賀県立長浜ドーム（滋賀県）
第23回日本国際工作機械見本市	小野裕道	$11 / 1 \sim 2$	東京ビッグサイト（東京都）
	安齋弘樹	11／7	東京国際フォーラム（東京都）
	吉田智	11／21	ハイブ長岡（新潟県）
PLC効率化プログラミングセミナー平成18年度KASTフォーラム2「バイオエタノール	佐藤善久	11／28	アエキビル（仙台市）
	池田信也	12／7	かながわサイエンスパーク（川
を巡る各界からの緊急報告」			崎市）
第2回 21 世紀を拓くフロライアア産業シリポジ所	大野正博	12／11	鉄鋼会館（東京都）
	＂	12／18	東京大学
1日で分かる環境•省エネ加工技術の基礎と実際	小野裕道	1／10	中野サンプラザ（東京都）
関西バイオクラスターフォーラム関西から世界へ）	池田信也	$1 / 22 \sim 23$	グランキューブ大阪（大阪府）
平成18年度アルコール・バイオマス研究会講演会	＂	2／8	学士会館（東京都）
第319講演会「ここまできたレーザー加工技術の最前線」	佐藤善久	2／14	工学院大学（東京都）
第1回環境ナノテク国際ワークショップ	伊藤嘉亮	2／20	日本科学未来館（東京都）
精密工学会春季学術講演会	緑川祐二小野裕道	$3 / 20 \sim 22$	芝浦工業大学豊洲キャンパス （東京都）
ナノバイオ国際シンポジウム	本田和夫	$2 / 21 \sim 2 / 22$	東京ビッグサイト（東京都）
表面技術協会第115回講演大会	三瓶義之	$3 / 7 \sim 9$	芝浦工業大学豊洲キャンパス （東京都）
日本食品分析センター講習会日本農芸化学会2007年度大会	$\begin{gathered} \text { 大野正博 } \\ 11 \end{gathered}$	$\begin{gathered} 3 / 14 \\ 3 / 25 \sim 27 \\ \hline \end{gathered}$	仙台国際センター（仙台市）東京農業大学（東京都）
（システム技術グループ）			東北大学（仙台市）
大学院派遣事業	高橋淳	4／6，4／25，5／	
		2，5／16，5／24	
		，6／8，6／26， 6	
		$\begin{array}{\|c} / 28,7 / 7,8 / 2 \\ 8 / 7 \end{array}$	
		$24,10 / 19$	
モータ技術展	＂${ }^{\text {\％}}$	4／21	幕張メッセ（千葉県）
電源システム展	大内繁男	4／21	
組込みソフトの活用による製品開発強化セミ ナー	尾形直秀	5／25	NIC0プラザ（新潟県）
Interop Tokyo 2006	浜尾和秀	$6 / 7 \sim 9$	幕張メッセ（千葉県）

研修名称	研修者名	研修目程	研修場所
平成18年度第1回環境保全•共生科学技術研究会	高橋淳尾形直秀大内繁男平山和弘浜尾和秀吉田英一	6／16	日本大学工学部（郡山市）
組込みシステム開発技術展	尾形直秀吉田英一高橋淳尾形直秀大内繁男	6／28	東京国際展示場（東京都）
機能安全セミナー	高樋昌平山和弘浜尾和秀吉田英一	8／23	ハイテクプラザ
会津大学における研究内容等に関するプレゼン テーショ	浜尾和秀吉田英一	9／12	会津大学（会津若松市）
新エネルギー導入促進に関する祙ワーク会議	大内繁男	9／13	農業総合センター（郡山市）
電子情報通信学会 情報ネットワーク・ネット ワークシステム研究会	浜尾和秀	$9 / 14 \sim 15$	東北大学（仙台市）
日本騒音制御工学会 平成18年秋季研究発表会	高樋昌	$9 / 19 \sim 21$	愛知工業大学（愛知県）
電力変換器の基礎とシステム設計の実際	大内繁男	10／6	\|マイウェイ・テクノサービス (神奈川県)
CEATEC JAPAN 2006	吉田英一	10／6	幕張メッセ（千葉県）
パワエレで使ら制御理論の基礎	大内繁男	11／1	マイウェイ・テクノサービス （神奈川県）
音質を考慮した快音設計の基礎と実際	平山和弘	11／8	ゆらぽうと（東京都）
福島県新エネルギーセミナー・施設見学会	高橋淳 大内繁男	11／15	郡山布引高原風力発電所（郡山市）
組込み総合技術展2006	尾形直秀吉田英一	11／15	パシフィコ横浜（横浜市）
＂	高橋淳	11／16	＂
隹	大内繁男	11／17	＂
電気四学会開催支部講演会	平山和弘	11／29	中央電気倶楽部（大阪府）
Internet Week 2006	浜尾和秀	$12 / 6 \sim 7$	パシフィコ横浜（横浜市）
マイコンによるインバータ制御の基礎と実際	大内繁男	12／8	マイウェイ・テクノサービス （神奈川県）
NEXCESS中級セミナー	吉田英一	$12 / 13 \sim 15$	IB電子情報館（愛知県）
雷子情報通信学会 東京支部シンポジウム	＂	12／20～22	＂
報セキュリティ問題の早期発見と対策にむけた新たな取り組み	平山和弘	$1 / 17$	機械振興会館（東京都）
インターネプコン・ジャパン	高橋淳	1／19	東京国際展示場（東京都）
次世代ネットワークのOSSソリューション セマンティックWEBカンファレンス2007	$\underset{\text { 布山和弘 }}{ }$	$1 / 24$ $1 / 25$	HP市谷セシールーム（東京都）機械振興会館（東京都）
Electronic Design and Solution Fair 2007	吉田英一高梠淳	1／25	パシフィコ横浜（神奈川県）
＂	高橋况 大内繁男	1／26	${ }^{\prime \prime}$
情報ネットワーク研究会	高樋昌	$2 / 1 \sim 2$	愛知県立大学（愛知県）
ディジタル信号処理技術基礎マスター講座	大内繁男	$2 / 5 \sim 6$	日本テクノセンターセミナー ルーム（東京都）
NET\＆COM2007	高樋昌	$2 / 7 \sim 9$	東京国際展示場（東京都）
	浜尾和秀	$2 / 8 \sim 9$	
パワエレ用シミュレーションPSIMセミナー	高橋淳大内繁男	2／9	マイウェイ技研セミナールーム （神奈川県）
半導体クラスターセミナー in KORIYAMA	高橋淳	2／19	ビックパレット（郡山市）
NiosII入門	吉田英一	2／22	アルティマワークショップルー ム（神奈川県）
あいづ組込み技術研究会	高橋淳	2／23	会津ベンチャーサロン（会津若 公

研修名称	研修者名	研修日程	研修場所
テーブルウェア・フェスティバル2007	出羽重遠小熊聡	$2 / 8 \sim 9$	東京ドーム（東京都）
エコデザインフォーラムin東北2007	出羽重遠	3／26	ホテルモントレ仙台（仙台市）
食品素材／添加物展	遠藤浩志	$5 / 31 \sim 6 / 1$	東京ビッグサイト（東京都）
国際食品工業展	小野和広	$6 / 8 \sim 9$	
日本食品保全研究会	＂	$9 / 7 \sim 8$	東京海洋大学品川キャンパス （東京都）
日本食品科学工学会第53回大会	小野和広遠藤浩志	$8 / 28 \sim 30$	日本大学湘南キャンパス（神奈川県）
糀菌ゲノムシンポジウム酒米研究会	高橋亮 I	$\begin{gathered} 6 / 9 \\ 5 / 24 \end{gathered}$	東京大学農学部弥生講堂 （独）酒類総合研究所（広島県）
全国新酒鑑評会製造技術研究会	／	5／25	東広島運動公園体育館
日本醸友会シンポジウム	＂	10／23～25	北トピア（東京都）
東北清酒鑑評会製造技術研究会	鈴木賢二高橋亮	11／15	仙台国税局（仙台市）
清酒酵母•麹研究会	鈴木賢二	10／10	北トピア（東京都）
日本醸造学会	／1	10／12～13	
食品関係技術研究会	小野和広	$11 / 1 \sim 2$	国際会議場（茨城県）
食品加工研究会	河野圭助	12／1	仙台第3合同庁舎（仙台市）
Soy Nutrition Institute Japan 学術講演会	遠藤浩志	$2 / 3$	慶應義塾大学（東京都）
喜多方ラーメンを核とした地域活性化促進セシナー	$1 /$	2／15	喜多方市
平成18年度第7回ソバ研究会	小野和広	2／24	国際会議場（茨城県）
食品開発展	遠藤浩志	$10 / 5 \sim 6$	東京ビッグサイト（東京都）
微生物制御システム研究部会	小野和広	1／23	品川区立総合区民会館（東京
日本農芸化学会大会	高橋亮	$3 / 24 \sim 25$	東京農業大学（東京都）
－	遠藤浩志	$3 / 26 \sim 27$	－
視覚の可視化・データベースによる戦略的商品開発イノバーションセミナー	河野圭助	11／21～22	光の家会館
食品開発2006セミナー	＂	10／4～5	東京ビッグサイト（東京都）
（いわき技術支援センター）			
エックス線作業主任者講習会	加藤和裕	$6 / 1 \sim 2$	堀留町区民会館（東京都）
防火管理者講習会	冨田道男	$6 / 29 \sim 30$	新舞子ハイツ（いわき市）
知財制度説明会	冨田大輔	7／5	ビッグパレットくくしま（郡山市）
エックス線作業主任者試験	加藤和裕	7／13	東北安全衛生技術セター（宮城県）
医薬品•医療機器等製造関係講習会	安藤久人	7／18	ビッグパレットくくしま（郡山市）
PLC効率化プログラミングセミナー	＂	7／26	エルパーク仙台（仙台市）
精密計測技術講習会（硬さ試験）	冨田大輔	7／28	ミットヨ計測学院（川崎市）
ものづくりセミナー	冨田道男	8／25	ホテルハマツ（郡山市）
夏季技術セミナー（溶接•接合技術）	安藤久人	8／31～9／1	東北大学工学部（仙台市）
福祉技術シンポジウム	冨田大輔	9／27	産総研臨海副都心センター（東京
	安滕人人		
知的財産戦略セミナー	中山誠一冨田大輔	11／2	いわき市生涯学習プラザ（いわ き市）
＂	冨田道男	11／16	॥
＂	加藤和裕	11／21	＂
＂	大越正弘	11／29	＂
FT／IR赤外顕微鏡基礎セミナー	加藤和裕	$11 / 9 \sim 10$	日本分光（株）（東京都）
レーザ協会セミナー	安藤久人	11／10	中央大学（東京都）
TRIZソフト操作セミナー東京	冨田道男	11／30	東京八重洲木ール（東京都）
生体関連セラミックス討論会	加藤和裕	12／1	東京工業大学すずかけ台キャンパス （横浜市）
半導体クラスターセミナー in AIDU	大越正弘冨田道男冨田大輔	12／26	会津若松市ワシントン玟ル（会津若松市）
バイオエンジニアリング講演会	安藤久人	$1 / 7 \sim 1 / 8$	杖ハパール汚仙台（仙台市）
福島市産学連携推進技術ゼミナール	加藤和裕	1／19	コラッセふくしま（福島市）
医療福祉機器研究会•医療福祉現場ニーズ発表会	安藤久人	1／25	ハイテクプラザ（郡山市）
次世代福祉•生活支援コーディイネータ・テキスト研修会	॥	1／30～1／31	アンフェリシオン（東京都）

研修名称	研修者名	研修日程	研修場所
MATLAB基本環境講習会	冨田大輔	2／1	住友不動産音羽ビル（東京都）
TOHOKU医工連携フォーラム	安藤久人	$2 / 2$	ホテルハマツ（郡山市）
	大越正弘		
半	冨田道男	2／6	いわきワシントンホテル椿山荘（いわき
半導体クラスターセ	加藤和裕	2／6	市）
	安藤久人		
環境ビジネス人材育成セミナー	加藤和裕	2／9	小名浜オーシャンホテル（いわ き市）
半導体クラスターセミナーinKORIYAMMA	大越正弘	2／19	ビッグパレットふくしま（郡山市）
国際ナノテクノロジー総合展	冨田道男	2／23	東京ビッグサイト（東京都）
制御機器入門セミナー	冨田大輔	$3 / 8 \sim 3 / 9$	ケートシティー大崎（東京都）
精密工学会春季大会	＂	3／20	芝浦工業大学（東京都）
半導体関連産業協議会	大越正弘	3／28	ホテルハマツ（郡山市）
資源•素材学会春季大会（東京都新宿区）	加藤和裕	$3 / 29 \sim 31$	早稲田大学（東京都）

2－6－3 会議出席

会議名称	出席者名	期日	場所
平成18年度ハイテクプラザ事業調整会議	宮野壯太郎玉手正義磯明夫大河原薫渡邊正幸菅原康則藤井正沸	4／25	杉妻会館（福島市）
商工労働部関係機関会議 （財）福島県産業振興センター理事会	宮野壯太郎	$\begin{aligned} & 4 / 28 \\ & 5 / 24 \end{aligned}$	福島市
平成18年度郡山地域テクノポリス推進機構第1回理事会	／	5／25	郡山市
発明協会理事会	＂	5／30	ハイテクプラザ
第5回産学官連携推進会議	大河原薫小川德裕	$6 / 9 \sim 11$	京都国際会館（京都府）
産学官連携高度製造技術人材育成検討委員会産学官交流の集い，東北産業技術交流会	宮野壯太郎 ＂	$\begin{gathered} 6 / 14 \\ 7 / 6 \end{gathered}$	日本大学工学部（郡山市） エルティ（福島市）
福島県電子機械工業会総会	磯明夫宮野壯太郎	7／6	福島市
東北地域産業技術懇談会	磯明夫大河原薫	7／7	ハイテクプラザ
産学官連携調整会議	宮野壯太郎	7／12	福島市
第79回公立鉱工業試験研究機関長協議会	宮野壯太郎菅原康則	$7 / 13 \sim 14$	山梨県
産学官連携高度製造技術人材育成検討委員会	宮野壯太郎	7／18	日本大学工学部（郡山市）
新商品生産による新事業分野開拓者認定制度幹事会	磯明夫	8／28	福島市
精密加工研究会	渡邉正幸	8／29	仙台市
産総研東北センター評価委員会	宮野壯太郎	8／30	＂
平成18年度福島県循環型農業推進会議連絡会	磯明夫	9／13	福島市
産学官連携推進会議	宮野壯太郎	9／20	福島大学（福島市）
2006産学官技術交流フェア	渡邉正幸	10／12	東京都
JST連絡会議	大河原薫	10／16	仙台市
産技連物質工学•資源・エネルギー・環境部会地域部会	渡邊正幸	$10 / 16 \sim 17$	山形市
発明展表彰式	宮野壯太郎	10／23	須賀川市
産学官連携推進会議	宮野壯太郎	10／25	ハイテクプラザ
東北地域発明表彰式	宮野壯太郎	10／27	青森県
半導体製造装置関連WG	渡邉正幸	11／1	仙台市
産学官連携推進会議第1回運営会議	磯明夫	12／6	杉妻会館（福島市）
産技連推進会議新組織設置説明会	宮野壯太郎	12／7	東京都
発明協会業務運営会議	＂	12／19	＂
輸送用機械関連産業の振興にかかる意見交換会	渡邉正幸小川德裕	12／19	福島市

会議名称	出席者名	期日	場所
産技連情報•電子部会 秋季東北•北海道地域部会 産技連情報•電子部会 第3回情報技術分科会情報通信研究会 組込み技術研究会 音•振動環境研究会 大沼西部3町村におけるブロードバンド環境実現 に向けた第3回勉強会 産技連情報•電子部会 第2回電子技術分科会実装•信頼性研究会	高橋淳 高樋昌浜尾和秀尾形直秀平山和弘浜尾和秀浜尾和秀大内繁男	$\begin{gathered} 10 / 16 \sim 17 \\ 11 / 14 \\ 12 / 13 \\ 12 / 14 \sim 15 \end{gathered}$	山形テルサ（山形県） 産総研臨海副都心センター（東 京都） 三島町町民センター（三島町） 産総研関西センター（大阪府）
（福島技術支援センター） 産技連繊維部会関東•東北地域部会総会産技連繊維部会総会 産技連関東•東北地域部会繊維測定技術研究会 産技連繊維部会製布分科会 産技連繊維部会繊維試験法分科会 産技連繊維部会幹事会 全国繊維技術交流プラザ 産技連素形材技術分科会 産技連繊維部会幹事会	野村隆菅野陽一三浦文明野村隆東瀬慎東瀬慎野村隆菅野陽一伊藤哲司宇野秀隆菅野陽一	$\begin{gathered} 4 / 20 \sim 21 \\ 5 / 31 \sim 6 / 2 \\ 9 / 15 \\ 10 / 5 \sim 6 \\ 10 / 26 \sim 27 \\ 11 / 28 \sim 29 \\ 11 / 30 \sim 12 / 1 \\ 12 / 14 \sim 15 \\ 2 / 16 \end{gathered}$	（桐生市） 広島県民文化センター（広島県） 福島技術支援センター 東京第一ホテル米沢（米沢市）滋賀県東北部工業技術セター（滋賀県） テクスピア大阪（大阪府） 産業技術総合研究所（名古屋 市） 東京都立産業技術研究所（東京 都）
（会津若松技術支援センター） 第37回陶磁器デザイン分科会 産技連物質工学部会第26回デザイン分科会 東北地域デザイン開発指導連絡会 産技連物質工学部会第14回塗装工学分科会 産技連窯業部会第41回セラミックス技術分科会 産技連物質工学部会平成 18 年度東北•北海道地域部会 産技連物質工学部会第15回木質科学分科会 産技連物質工学部会第27回デザイン分科会 産技連物質工学部会第15回画像プロセス分科会 陶磁器CAE研究会 「給食用強化磁器食器の衝撃試験法」研究会平成18年度第1回研究会 平成18年度全国食品関係試験研究場所長会議及 び食品関係技術研究会 平成18年度食品試験研究推進会議	出羽重遠山崎智史出羽重遠大堀俊一竹内克己須藤靖典山崎智史橋本春夫 I出羽重遠小熊聡須藤靖典山崎智史 ノ河野圭助 ＂	$\begin{gathered} 7 / 13 \sim 14 \\ 7 / 6 \sim 7 \\ 9 / 14 \\ 9 / 21 \sim 22 \\ 11 / 17 \\ 10 / 16 \sim 17 \\ 11 / 21 \\ 11 / 22 \\ 12 / 21 \\ 3 / 15 \sim 16 \\ 3 / 20 \\ 10 / 31 \sim 11 / 1 \\ 3 / 1 \sim 2 \\ \hline \end{gathered}$	瀬戸蔵（愛知県） ホテルセントパレス倉吉（鳥取県） 東北経済産業局（仙台市） 神奈川県産業技術センター （独）産業技術総合研究所中部セ ンター（愛知県） 山形テルサ（山形県） 神奈川県産業技術センター東京都立技術研究センター東京都多摩中小企業振興セン ター（東京都） 京都市産業技術研究所工業技術 センター 名古屋ルーセントタワー（愛知県） つくば国際会議場（茨城県）
（いわき技術支援センター） 商工労働部第1回関係機関会議 いわき市選出県会議員との意見交換会 いわき金属工業協同組合講演会 福島高専協力会定期総会 いわき発ものづくり協同組合設立総会 いわき市内製造業調査打合せ	大越正弘 ＂ 冨田道男大越正弘冨田道男大越正弘安藤久人 冨田道男	$4 / 28$ $5 / 29$ $5 / 29$ $5 / 31$ $6 / 5$ $6 / 15,7 / 12,9$ $/ 25,12 / 7,1 /$ $10,3 / 19$	杉妻会館（福島市） いわき合同庁舎（いわき市） パレスいわや（いわき市） ＂ いわきワシントンホテル（いわき市） いわき合同庁舎（いわき市）

会議名称	出席者名	期日	場所
熱電変換素子利用技術研究会	大越正弘冨田大輔	6／29	いわき明星大学（いわき市）
	大越正弘		
産学官交流の集い	冨田道男加藤和裕	7／6	ウェデイングエルティ（福島市）
出前産官学交流会	冨田大輔安藤久人	9／15	弥満和プレシジョン会津工場（会津坂下町）
科学技術調整会議	大越正弘	9／22	福島県庁西庁舎（福島市）
いわきものづくり基盤技術研究会	大越正弘冨田道男	9／26	いわき明星大学（いわき市）
全国公設鉱工業試験研究機関事務連絡会議	小鍛治孝則	$10 / 12 \sim 13$	ぱるるプラザ京都（京都市）
産技連資源・エネルギー・環境部会 東北•北海道地域部会	加藤和裕	$\begin{gathered} 10 / 16 \sim \\ 10 / 17 \end{gathered}$	山形テルサ（山形県）
知的基盤分科会計測分科会	冨田大輔	$\begin{gathered} 10 / 19 \sim \\ 10 / 20 \end{gathered}$	セントコア山口（山口県）
科学技術振興機構育成研究報告会	加藤和裕	10／23	仙台市青年文化センター（仙台市）
熱電変換素子利用技術研究会	冨田道男冨田大輔	11／8	いわき明星大学（いわき市）
産総研知能システム部門研究成果発表会	冨田大輔大越正弘	11／15	産業総合研究所（茨城県）
ビジ礿・メデイ゙カルクリエーションふくしま2006	冨田道男冨田大輔安藤久人	11／16～17	ビッグパレットふくしま（郡山市）
分析研究会 中小企業活性化支援会議	中山誠一冨田道男	$\begin{gathered} 11 / 17 \\ 11 / 21 \sim 22 \end{gathered}$	産総研東北センター（仙台市）大田区産業プラザ（東京都）
分析分科会及び知的基盤部会総会	中山誠一	$11 / 30 \sim 12 / 1$	ハーネル仙台（仙台市）
MATLAB EXPO 2006	冨田大輔安藤久人	12／7	東京プリンス杖ル（東京都）
いわき地域経済活性化検討委員会	大越正弘	12／19，1／23	いわき産業会館（いわき市）
全国中小企業活性化支援会議	＂	1／18～1／19	都市セター林ル（東京都）
産業人材育成プログラム検討委員会	＂	1／25	福島大学（福島市）
いわき地域活性化検討委員会シンポジウム	＂	2／22	ワシントイホテル（いわき市）
産業人材育成プログラム検討委員会	＂	3／1	（株）菊地製作所（飯館村）
いわき市選出県会議員との意見交換会	＂	3／14	いわき合同庁舎（いわき市）
産学官連携の集い	＂	3／27	パレスいわや（いわき市）

2－6－4 研究会•研修会開催

（1）ハイテクプラザ主催（共催なし）

名 称	期日	場 所	テーマ	講 師	受講者
（いわき技術支援センター）					
いわき材料技術セミナー	1／31	いわき技術支援 センター	WEEE／RoHS指令セミナー	日本電子（株 松浦徹也•安東和人	80
いわき材料技術セミナー	2／2	いわき技術支援 センター	RoHS対象物の分析手法と注意事項	SIIナノテクノロジー（林川瀬晃•夏井克己	40
いわき材料技術セミナー	3／16	いわき技術支援 センター	現場で役立つGPS規格 と表面粗さ	森ミットヨ 石戸谷孝雄	48

（2）福島県産業振興センター（テクノコム）との共催

名 称	期日	場 所	テーマ	講 師	受講者
（連携支援グループ）					
材料技術研修 第1回	6／20	ハイテクプラザ	材料の硬さの測定	（森島津製作所垣尾尚史，他	48
初心者向けオシロスコープ入門セミナー	7／21	ハイテクプラザ	オシロスコープの基礎	日本テクトロニクス森向井良政	16
L C R 測定の基礎	7／26	ハイテクプラザ	インピーダンス測定の基	アジレント・テクノロ ジー（森）井上賢一	13
実践RFID測定技術セミナー	10／31	ハイテクプラザ	スペクトラム測定	$\begin{aligned} & \text { 日本テクトロニクス森) } \\ & \text { 篠瀬吉男 } \\ & \text { (社) 産業環境管理協 } \end{aligned}$	3
環境セミナー	11／10	ハイテクプラザ	REACH規制	会 化学物質管理情報 センター所長 傘木和俊	34
材料技術研修 第2回	12／12	ハイテクプラザ	光学顕微鏡の基礎	オリンパス株桑野祐吉	45
材料技術研修 第3回	2／8	ハイテクプラザ	光学顕微鏡の基礎（第二回）	オリンパス（株）秋元学，他	34
（プロセス技術グループ）					
計測技術研究会	$\begin{gathered} 6 / 1 \sim \\ 2 \end{gathered}$	ハイテクプラザ	基本測定器の取り扱いと管理	吉田智，緑川祐二， 小野裕道	16
（システム技術グル					
Visual Basic．NET基礎講座	$\begin{gathered} 10 / 3 \\ 4,10 \end{gathered}$	ハイテクプラザ	Visual Basic．NET基礎に ついて	フォルテシステムズ（森）佐藤浩	12
	10／11				
Visual Basic．NET応用講座	$\begin{gathered} 17,1 \\ 8 \end{gathered}$	ハイテクプラザ	ついsual Basic ．NET心用に	佐藤浩	8
マイコン応用技術研修	$\begin{aligned} & 9 / 12 \\ & \sim 15 \end{aligned}$	ハイテクプラザ	オープンソースによる ITRON，TCP／IP組込みアブ リケーション開発	苫小牧工業高等専門学校 阿部司 ハイテクプラザ職員	7
FPGAによるディジタル回路 の設計	$\begin{array}{r} 7 / 19 \\ \sim 21 \end{array}$	ハイテクプラザ	FPGAによるディジタル回路の設計について	東京都立産業技術研究所 坂巻佳壽美	8
Java基礎講座	$\begin{array}{r} 11 / 7, \\ 8,14 \end{array}$	ハイテクプラザ	Java言語の基礎について	フォルテシステムズ森佐藤浩	9
Java \＆Webプログラミング応用講座	$\begin{gathered} 11 / 15 \\ 21,2 \\ 2 \end{gathered}$	ハイテクプラザ	Java言語とWebのプログラ ミングについて	フォルテシステムズ（森）佐藤浩	12
情報セキュリティセミナー	$\begin{gathered} 9 / 28, \\ 29 \\ \hline \end{gathered}$	ハイテクプラザ	情報セキュリティに関す る要素と操作	(有)ジャパンウィング 加藤竜哉	9

名 称	期日	場 所	テーマ	講 師	受講者
実践的ノイズ対策	$\begin{gathered} 11 / 21 \\ , 22 \end{gathered}$	ハイテクプラザ	最小限の費用でノイズ対策ができるようになる	エスアイ研究所色川重信 イトケン研究所伊藤健一 （森ザクタテクノロジー島貫純 EMC研究会出口博一	13
$\begin{aligned} & \text { Windowsネットワークセミ } \\ & \text { ナー } \\ & \hline \end{aligned}$	$\begin{gathered} 12 / 14 \\ , 15 \\ \hline \end{gathered}$	ハイテクプラザ	Windowsネットワークの基礎と実践について	$\begin{aligned} & \text { 福島コンピュータシス } \\ & \text { テム森 } \end{aligned} \text { 佐藤義博 }$	13
（福島技術支援センター）地域技術支援講習会（福島）	12／5	福島技術支援セ ンター	基礎から学ぶ実践的エネ ルギー分散型蛍光 X 線分析入門	㑣島津製作所関西支社造田茂彦	23
（会津若松技術支援セン ターا） 酒造設計のためのきき酒セ 地域技術支援講習会 「創作シルバーアクセサ リー入門•実技講習会」	$\begin{array}{\|l} \hline 10 / 20 \\ \\ 8 / 24 \\ \sim 25 \\ \hline \end{array}$	会津若松技術支援センター 会津若松技術支援センター	きき酒実習 ワックスの原形制作，シ ルバー仕上げ加工	食品技術 G鈴木賢二，高橋亮金工作家 秋濱克大	12 15
（いわき技術支援センター）地域技術支援講習会地域技術支援講習会	$12 / 5$ $12 / 12$	いわき技術支援 センター いわき技術支援 センター	現場で役立つ鉄鋼熱処理技術（基礎編） 現場で役立つ鉄鋼熱処理技術（応用編）	ソーラー金属加工研究所 藤澤昭一 ソーラー金属加工研究所 藤澤昭一	68 53

（3）その他の機関との共催

名 称	期日	場 所	テ－マ	講 師	受講者
（会津若松技術支援セン ター） 会津工業高等学校インター ンシップ事業	$\begin{gathered} 10 / 3 \\ \sim 5 \\ \hline \end{gathered}$	会津若松技術支援センター	酒造技術，デザイン	鈴木賢二，高橋亮，出羽重遠，小熊聡	3
（いわき技術支援センター） 中性子の産業利用説明会 創造性育成セミナー 創造性育成セミナー 創造性育成セミナー	$\begin{aligned} & 6 / 21 \\ & 10 / 4 \\ & 10 / 11 \\ & 10 / 18 \end{aligned}$	いわき技術支援 センター いわき技術支援 センター福島高等専門学校 いわき技術支援 センター	機械部品の深部残留応力 とひずみ測定等 TRIZ概論•高耐熱性材料 TRIZ事例・おもちゃの開発 バッシリー検査装置•知的財産	日本原子力研究開発機構 （株アイデア 前古護福島高専 伊藤正義 （株アイデア 前古護 タカラ 佐藤安太東洋システム 庄司秀樹弁理士 水野博文	20 25 38 21

2－6－5 研修生受け入れ事業

テーマ	期 間	研修生	担当職員
発泡エポキシ樹脂の最適発泡条件 とその特性についての研究	10／2～2／28	$\begin{aligned} & \text { 福島大学教育学部生活科 } \\ & \text { 学系教育コース 堀米剛 } \\ & \text { 史, 加藤怜 } \end{aligned}$	材料技術G 菊地時雄
組み込み用マイコンを用いたネッ トワーク対応計測装置の構築実習	9／19～9／29	電気通信大学電気通信学 部電子工学科 加藤史洋	システム技術G 高樋昌

2－7 所内見学•視察来場者（平成 $14 \sim 18$ 年度）

18 年度	4月	5月	6月	7月	8月	9月	10 月	11月	12月	1月	2月	3月	合 計
件数（件）	2	1	3	0	2	8	3	5	3	0	5	2	34
人数（人）	41	46	90	0	66	153	105	131	57	0	90	35	814

17 年度	4月	5月	6月	7月	8月	9月	10 月	11月	12月	1月	2月	3月	合 計
件数（件）	5	4	3	2	1	2	3	5	4	0	6	2	37
人数（人）	254	25	63	54	11	10	82	60	88	0	97	34	778

16 年度	4月	5月	6 月	7月	8月	9月	10 月	11月	12 月	1月	2月	3月	合 計
件数（件）	4	1	3	1	1	2	4	5	1	2	2	1	27
人数（人）	246	19	95	36	21	15	98	128	5	37	6	43	749

15 年度	4 月	5月	6 月	7月	8月	9 月	10 月	11 月	12 月	1 月	2月	3月	合 計
件数（件）	2	2	5	7	4	3	9	8	3	1	1	3	48
人数（人）	133	8	125	97	43	87	445	194	61	18	2	86	1,299

14 年度	4月	5月	6 月	7月	8月	9月	10 月	11 月	12 月	1月	2月	3月	合 計
件数（件）	1	0	8	4	3	2	8	5	6	3	1	2	43
人数（人）	208	0	138	116	72	40	210	122	106	3	2	49	1,066

2－8 サイエンス教室（集まれっ！ハイテクプラザ）開催事業

開催年度	受付総数	サイエンス教室数 （生徒総数）	備 考
15 年度	250 名	$\begin{gathered} 9 \text { クラス } \\ (88 \text { 名 }) \end{gathered}$	講演会，研究室•設備の一般公開，ムシテックワー ルド（財団法人ふくしま科学振興協会）ワークショ ップ
16 年度	437 名	$\begin{gathered} 14 \text { クラス } \\ (226 \text { 名) } \end{gathered}$	講演会，研究室•設備の一般公開，ムシテックワー ルド（財団法人ふくしま科学振興協会）ワークショ ップ
17 年度	667 名	$\begin{gathered} 13 \text { クラス } \\ (190 \text { 名) } \end{gathered}$	研究室•設備の一般公開，パネル展示，ムシテック ワールド（財団法人ふくしま科学振興協会）ワーク ショップ
18 年度	707 名	$\begin{aligned} & 12 \text { クラス } \\ & (216 \text { 名) } \end{aligned}$	公開実験室，研究室•設備の一般公開，企業パネル展示，ムシテックワールド（財団法人ふくしま科学振興協会）ワークショップ，郡山市ふれあい科学館 ワークショップ

2－9 新聞記事•報道等

区分	報道媒体名	内 容（見出し・タイトル）	年 月 日
新聞等	読売新聞	タンニンさび防止 独に特許出願 県ハイテクプラザ	H18．4． 3
	福島民友	会津漆器の技磨く 若松で訓練校入校式	H18．4． 6
	福島民報	県ハイテクプラザ 職員が県内巡回相談 企業の技術力アップ支援	H18．4． 6
	福島民報	メッキ新手法開発の苦労はインタビュー 漆の研究が成功の鍵に	H18．4． 7
	福島民報	伝統技術習得へ決意 会津漆訓練校で入校式	H18．4． 7
	福島民報	県，新技術の開発支援 大学と連携の中小企業研究費を補助	H18．4． 12
	福島民報	会津漆 東京造形大と商品開発 若松市産学連携	H18． 4.14
	福島民報	産学官連携型ものづくり事業説明 若松	H18． 4.15
	福島民友	産学官で新事業創出ハイテクプラザ 6月，プロジェクト公募	H18．4．15
	朝日新聞	「会津漆器」若い力継承 「技術後継者訓練校」に新入生 在校生の8割 20 代女性	H18． 4.27
	朝日新聞	職人と東京造形大がスクラム 会津漆器 新製品開発へ	H18．5． 9
	福島民報	乾杯！本県，酒どころ日本一 鑑評会金 23 秘伝交換，研究実る	H18．5． 20
	福島民報	E Uで販売「乳がんチェッカー」 県とスウェーデンのL L 事業 郡山 に合弁会社設立へ 新開発の乳酸菌輸入	H18．6． 6
	福島民報	中性子産業に活用を いわき技術支援センター 利用状況を説明	H18．6． 23
	福島民報	4日，いわきで 技術研究発表会	H18．6．23
	福島民報	全国の頂点維持する秘策は インタビュー 多彩な魅力伸ばしたい	H18．6．23
	福島民友	中性子の産業利用講習会	H18．6．23
	福島民報	研究成果を展示 県ハイテクプラザ 若松支援センター	H18．6． 28
	いわき民報	福神日産工場長が特別講演 ハイテクプラザ 6テーマで研究発表	H18．7． 6
	福島民報	日産のV字回復語る ハイテクプラザ発表会 福神いわき工場長	H18．7． 7
	河北新報	蔵の枠超え担い手＂醸造＂福島 日本酒で「金」獲得日本一	H18． 7.11
	福島民報	最新の技術や研究成果披露 郡山で発表会	H18． 7.12
	福島民友	最新の研究成果紹介 県ハイテクプラザの発表会	H18． 7.12
	福島民報	バイオマスの循環システム研究発表 いわき	H18． 7.26
	福島民友	バイオマス利用取り組みを報告いわき養護学校と矢吹町	H18． 7.26
	福島民報	バイオ活用で意見交換 いわきものづくり基盤技術研究会 取り組みも報告	H18． 7.27
	福島民友	県ハイテクプラザ 本県伝統の縫製技術活用 炭素繊維織物を開発	H18．8． 2
	福島民友	金賞数日本一を祝う 福島で県産清酒技術発表会	H18．8． 3
	福島民報	県酒造組合 全国新酒鑑評会の金賞数日本一祝う	H18．8． 3
	福島民友	県ハイテクプラザ 19日に「科学教室」	H18．8． 8
	福島民友	公開実験室やパネル展示会 ハイテクプラザで親子教室	H18．8．21
	福島民友	特許無料発明相談会	H18．8．23
	福島民報	特許無料発明相談会	H18．8．23
	福島民報	地酒ソフトクリーム開発 国権酒造と県ハイテクプラザ若松 酒粕を真空速結乾燥処理 アルコール分なし	H18． 8.25
	毎日新聞	ノンアルコールでも日本酒の味 「地酒ソフト」好評 南会津•国権酒造「道の駅田島」で販売 「町の名物」に期待	H18． 8.26
	福島民報	会津塗汁椀，陶磁器カップ U D 製品 2 種完成ハイテクプラザ若松	H18．8．27
	日本経済新聞	酒かすソフトクリーム 国権酒造など開発	H18．9． 2
	福島民報	県酒造組合の秋季鑑評会 上質の150点そろう	H18． 9.15
	福島民友	県酒造組合が秋季鑑評会	H18． 9.15
	福島民報	県ハイテクプラザ 製品化へ開発順調 公募型•地域活性化事業	H18． 9.28
	福島民友	研究成果を発表 県ハイテクプラザ事業	H18．9．28
	いわき民報	創造性育成セミナー	H18．10． 3
	福島民報	最新技術利用して 喜多方相談会と事業説明会 県ハイテクプラザ	H18．10． 5

区分	報道媒体名	内 容（見出し・タイトル）	年 月 日
新聞等	日本経済新聞	炭素緎維三次元織物の開発	H18．10． 6
	福島民報	県内工場立地89件 昨年1年間の総数超す 1－9月	H18．10． 6
	福島民友	創造性育成セミナー	H18．10． 6
	福島民報	ハイテクプラザ事業紹介 南相馬と喜多方で説明会	H18．10． 8
	日本経済新聞	福島県ハイテクプラザの事業発 乳酸菌健康食品 開発へV B 設立	H18．10． 11
	福島民報	I S Oシステム認証必要性学ぶ 郡山で技術研究会	H18．10． 16
	福島民報	創造性育成セミナー	H18．10． 16
	福島民報	＂技術の殿堂＂入り 日産いわき工場生産のVQエンジン 県の支援セン	H18．10． 17
	福島民友	V Qエンジン展示	H18．10． 17
	福島民友	果樹園芸振興 新ブランド化 県ハイテクプラザ ブルーベリーから機能 性食品開発へ	H18．10． 23
	福島民報	産学官連携し新技術開発支援 25日，県推進会議発足	H18．10．23
	いわき民報	V Qエンジン展示	H18．10．23
	いわき民報	鉄鋼熱処理技術講習会	H18．10． 25
	福島民友	若松で利き酒勉強会 酒造り後継者育成	H18．10． 26
	福島民報	製品化予定など現状報告 県ハイテクプラザ 公募型事業の推進会議	H18．11． 1
	福島民報	川俣に工場の東北撚系 貞明皇后蚕系褒賞 全国で唯一の受賞 ストレッ チ・シルク商品化	H18．11． 3
	福島民報	最終年度の2研究報告 県ハイテクプラザ 公募型の新事業創出会議	H18．11． 9
	福島民報	新産業創出の可能性は 県ハイテクプラザ共同研究推進会議 炭素繊維 俗	H18． 11.15
	福島民報	県，初のI Tセミナー 27日郡山 中小企業に経営革新PR	H18． 11.25
	福島民報	師走ほのぼの 若き杜氏たちの挑戦	H18．12． 4
	福島民報	鉄鋼の熱処理学ぶ 地域技術支援講習が開講 いわき	H18．12． 6
	福島民報	全自動電気調理器 家庭用ハンディ精米器 山本電気が発売	H18．12． 6
	福島民友	鉄工熱処理技術講習会	H18．12． 7
	福島民報	特許無料発明相談会	H18．12．12
	福島民報	ハイテクプラザ視察 南東北総合卸センター21ビジョン委	H18． 12.19
	福島民友	酒作りの安全と良い日本酒が出来る事で，ハイテクプラザ若松支援セ ンター長が玉ぐしをささげた	H18． 12.19
	福島民報	小型軽量「飯椀」開発へ 会津本郷焼ブランド確立事業	H18．12． 23
	福島民報	県づくりに全力誓う 県職員表彰式 永年勤続者らたたえる	H18． 12.23
	福島民友	ふくしまのニューフェース（技術編，食物編）	H19．1． 1
	福島民友	独特風味で栄養豊か 酒粕のソフトクリーム	H19．1． 1
	福島民友	努力重ね広がる可能性 スギ材の表面硬度化で床板や家具用途いろいろ	H19．1． 1
	福島民友	県内の半導体企業支援 集積本格化で取引拡大 県，技術マップを作成	H19．1． 8
	福島民友	東北経産局 漆の外装品事業を認定 東京化成工業（猪苗代）など連携	H19． 1.13
	福島民報	漆器研修生の力作展示 若松 来月3日まで研修生を募集	H19． 1.25
	福島民友	斬新な大堀相馬焼見て，窯元4人が郡山で作品展	H19．2． 2
	いわき民報	化学物質規制 最新動向学ぶ 材料技術ゼミ 県ハイテクプラザいわき技術支援センター	H19．2． 6
	福島民友	環境政策や規制理解 ハイテクプラザでセミナー 県ハイテクプラザい わき技術支援センター	H19．2． 6
	福島民友	最新の化学物質 規制動向を学ぶ 技術者らセミナー	H19．2． 7
	日本経済新聞	桑の葉で特産茶 松本養蜂総本場 県内農家から原料	H19． 2.15
	福島民友	希土類の現況理解 郡山で県がセミナー 県ハイテクプラザ	H19． 2.15
	福島民報	環境にやさしい 生産活動を探る 郡山 県ハイテクプラザ	H19． 2.15
	福島民報	水蒸気殺菌の技術学ぶ 若松で研究成果講習会	H19． 2.24

区分	報道媒体名	内 容（見出し・タイトル）	年 月 日
新聞等	福島民報	ハイテクプラザ 成果普及へ講習 いわき	H19． 2.25
	いわき民報	食品残潶の高度利用へ3年間の研究成果発表 ハイテクプラザ 講習会	H19．3． 2
	日本経済新聞	会津漆塗りの高級な外装品 プラスチック部品の東京化成 自動車や家電向け 福島工場で量産へ	H19．3． 3
	福島民報	高機能複合体の研究成果を報告 県ハイテクプラザ	H19．3． 4
	福島民報	新酒の味，香り豊か 郡山酒造協組持ち寄り会6蔵元39銘柄をチェック	H19．3． 4
	福島民報	商品化など成果報告 ナタデココ食品開発 県ハイテクプラザ	H19．3． 9
	福島民報	県産ソバ初の新品種 収量2割り増し味良好	H19．3． 9
	福島民報	又兵衛，会津中将，末廣夢の香 新酒鑑評会で知事賞 味，香りなど厳選	H19． 3.16
	福島民報	喜多方産の「身不知柿」 加工食品開発，国が支援 東北で唯一 新年度 に市場調査	H19．3． 16
	福島民報	極小構造プラの量産化技術発表 県ハイテクプラザ	H19．3．18
	福島民報	5人に証書 県認定会津漆器技術後継者訓練校	H19．3．18
	福島民友	喜多方産身不知柿商品開発へ 資源エネ庁調査事業に採択 県内唯一	H19．3． 22
	福島民友	ハイテクプラザ 福島大訪れ見学 南相馬機械工業振興協	H19．3．23
	福島民報	宮野ハイテクプラザ所長ら再任 県の非常勤特別職	H19． 3.28
	福島民報	若松の松本養蜂総本場 桑の葉＋ローヤルゼリー＝新サプリ 二本松の N P O と連携	H19． 3.28
テレビ	福島放送	トピックスらつくしま（研究成果発表会を紹介）	H18． 7.15
	テレビユー福 島	ウィークリー福島（出前講座を紹介）	H18．10． 1
	福島テレビ	うつくしま情報局（ハイテクプラザ会津の清酒アカデミーを紹介）	H18．12． 10
	福島テレビ	らつくしま情報局（会津塗に対するハイテクプラザ会津の取り組み等 を紹介）	H19．3． 25

3 産業財産権

4 福島県ハイテクプラザ業務運営委員会
5 福島県ハイテクプラザ技術課題検討会議
6 福島県ハイテクプラザの概要
7 福島県ハイテクプラザの位置（各技術支援センターを含む）

3 産業財産権

区分	$\begin{gathered} \hline \text { 出願 } \\ \text { 年月日 } \end{gathered}$	発明等の名称	発 明 者	出願番号 （登録番号）	実施許諾 （許諾年月日）
特許	H3．10． 22	低阻止逆浸透圧膜を用 いた清酒及び䤆酵調味料の製造法	高橋幹雄，他	特願平3－273697 (2087927)	
特許	H3．10． 24	連続定量システム	大越正弘	特願平3－276014 $(2095453) ~ \% ~$	
特許	H4．12． 8	アルコール飲料の製造方法	遠藤浩志，高橋幹雄，鈴木英二	$\begin{gathered} \text { 特願平 } 4-327717 \\ (3353155) \end{gathered}$	
特許	H6．10． 18	吊具の自動旋回位置決 め方法及び自動旋回位置決め装置を備えた吊具	遠藤勝幸，他県内企業	$\begin{gathered} \text { 特願平6-341139 } \\ (3301048) ~ \end{gathered}$	
$\begin{aligned} & \text { 実用 } \\ & \text { 新案 } \end{aligned}$	H7．8．7	防災マスク	菅野陽一，他県内企業	実願平7－009603 $(3021457) ~ \%$	
特許	H8．11．15	紫外線硬化型含漆合成樹脂塗料及び秒速乾燥法	須藤靖典，他県内企業	$\begin{gathered} \text { 特願平8-304345 } \\ (2821110) \end{gathered}$	$\begin{gathered} \text { H13. } 2.21 \\ \text { H16. 10. } 29 \end{gathered}$
特許	H8． 12.11	金属面の研磨装置	菅原康則，遠藤勝幸	特願平8－359428 (2787294)	
特許	H8． 12.11	非接触表面粗さ測定方法およびその測定装置	渡部一博，高桶昌，平山和弘	特願平8－359429 （2899875）＊	
特許	H9．9． 18	研磨材の回収方法	加藤和裕	特願平9－253620 (3134189)	
特許	H10．10． 26	自動酸化重合型漆塗料 の製造方法	須藤靖典	特願平10－304184 (3001056)	$\begin{aligned} & \text { H15.2.17 } \\ & \text { H15. 3. } 28 \end{aligned}$
特許	H11．5．19	有機化合物用蒸発装置	伊藤嘉亮，本田和夫，渡部一博	特願平11－137917 $(3095740) ~$	
特許	H11．5．19	絹加工糸，その製造法 および絹織物の製造方法	菅野陽一，伊藤哲司	特願平11－137948 (3190314)	H12．8． 10
意匠	H12．1．25	重箱の意匠	竹内克己	意願2000－4356 (1094393)	H15．2． 17
特許	H12．7．21	光触媒を用いた水処理方法	大堀俊一，大河原薫	特願2000－219969 (3554857)	
特許	H13．3．29	横編機を使用した編織地の製造方法	野村隆，長澤浩	特願2001－094514 $(3583377) \%$	
特許	H14．2．18	漆を主体とする粘土状塑性造形材料	渡部修，竹内克己	特願2002－039873 (3669435)	H15．3． 18
特許	H14． 2.18	真円測定方法及び真円測定装置	遠藤勝幸	特願2002－039974 （3564106）\％	
特許	H14．6．26	ネット状発熱体	東瀬慎	特願2002－185413 (3952285)	
実用新案	H14．10． 15	低床型空気式昇降台	渡辺正幸，冨田道男，角田稔，斎藤俊郎，工藤弘行，安齋弘樹，他県内企業	実願2002－006502 (3093421)	
特許	H14．10． 15	低床型空気式昇降台	渡辺正幸，角田稔，斎藤俊郎，工藤弘行，安齋弘樹，他県内企業	特願2002－300480 (3771891)	
特許	H15．3． 3	円筒体の形状測定方法	遠藤勝幸	特願2003－055486 (3722288)	
特許	H15．8． 18	氷柱防止装置	菅野陽二，他県内企業	特願2003－294364	

区分	$\begin{gathered} \hline \text { 出願 } \\ \text { 年月日 } \end{gathered}$	発明等の名称	発 明 者	出願番号 （登録番号）	実施許諾 （許諾年月日）
特許	H15．9． 4	光重合性インキ組成物 およびその乾燥方法	須藤靖典，出羽重遠，他県内企業等	特願2003－312595 （3833202）	
特許	H16．1． 20	焦電型赤外線素子の製 造方法	伊藤嘉亮，本田和夫	特願2004－11928 (3881657)	
特許	H16．3．11	内面拡散反射体を形成 するための母型の製造方法及び内面拡散反射体	菅原康則，吉田智，他県内企業等	特願2004－069339 (3987503)	H17．12． 12
特許	H16．3．31	発酵処理装置，および発酵状態判断方法 （旧：有機性廃棄物の処理方法及びこれを用 いた処理装置）	桑田彰，池田信也，鈴木英二，渡邊真，他県内企業（ 1 社）	特願2004－104133 (3894926)	
特許	H16． 2.18	$\begin{aligned} & \hline \text { 亜鉛または亜鉛合金の } \\ & \text { 黑色化処理液および黒 } \\ & \text { 色化処理方法 } \\ & \hline \end{aligned}$	大堀俊一，宇津木隆宏	$\begin{gathered} \text { 特願2004-040901 } \\ (3763834) \end{gathered}$	
特許	H16． 12.3	無機繊維織物および三 次元無機繊維織物の製造方法	菅野陽一，三浦文明，長澤浩，伊藤哲司，吉田正尚，東瀬慎，佐々木ふさ子，他県内企業等	特願2004－350521 (3954611)	
特許	H17．3．16	$\begin{aligned} & \text { 微粒子コーティング有 } \\ & \text { 機材料及び有機材料の } \\ & \text { 微粒子コーティング方 } \\ & \text { 法 } \\ & \hline \end{aligned}$	吉田正尚，三浦文明，伊藤哲司，東瀬慎	特願2005－74399	H19． 2.26
特許	H17．3．16	木質材料の表面処理方法	橋本春夫	特願2005－93739	
特許	H17．10． 20	$\begin{aligned} & \text { タンニンを利用した防 } \\ & \text { 食皮膜金属および防食 } \\ & \text { 皮膜形成方法 } \\ & \hline \end{aligned}$	渡部修	特願2005－305232	
特許	H17． 9.2	$\begin{aligned} & 1 \text { 1-デオキシノジリマイ } \\ & \text { シンを高含有する組成 } \\ & \text { 物の製造方法 } \end{aligned}$	後藤裕子，他	特願2005－254708	
特許	H18．1．30	$\begin{aligned} & \text { 漆用常温硬化促進剤及 } \\ & \text { びそれを用いた常温硬 } \\ & \text { 化性漆粘土組成物 } \end{aligned}$	渡部修，竹内克己，他県内企業等	特願2006－020779	
$\begin{aligned} & \text { ドイツ } \\ & \text { 特許 } \end{aligned}$	H18．3．22	タンニンを利用した防 食皮膜金属および防食 皮膜形成方法	渡部修	基礎出願番号特願2005－305232	
特許	H18．3．29	射出成形金型装置	本田和夫，伊藤嘉亮，三瓶義之，安齋弘樹	特願2006－092018	
特許	H18．3． 30	漆を主成分とする接着剤	渡部修，竹内克己	特願2006－092892	
特許	H19．3．15	$\begin{aligned} & \text { 木質材料の表面強化方 } \\ & \hline \end{aligned}$	橋本春夫	特願2007－066247	
特許	H19．3．15	架橋したタンニンを利用した防錆皮膜形成用処理剤，防錆皮膜形成方法および防錆処理金属	渡部修，植松崇	特願2007－066263	

[^0]
4 福島県ハイテクプラザ業務運営委員会

4－1 設置要領

（趣 旨）
第1条 福島県ハイテクプラザ（以下「ハイテクプラザ」という。）における業務運営に関する課題等について検討を行うことにより，本県工業技術振興の拠点及び県内企業の技術力向上のための支援機関としての機能を充実させるため，福島県ハイテクプラザ業務運営委員会（以下「委員会」という。）を設置する。
（業 務）
第2条 委員会においては，前条の目的を達成するため，次に掲げる事項について協議する。
（1）ハイテクプラザの業務運営に関する課題について
（2）その他必要な事項
（構 成）
第3条 委員会は，次の者をもつて構成する。
（1）福島県の職員
（2）東北経済産業局の職員
（3）産業技術総合研究所東北センターの職員
（4）財団法人福島県産業振興センターの役職員
（5）福島県中小企業団体中央会の役職員
（6）学識経験者
（7）業界の代表者
（8）その他関係機関の職員
（委員長）
第4条 委員会に委員長を置き，福島県商工労働部長をもつて充てる。
2 委員長に事故あるときは，委員長の指定した者が代理する。
（委員会）
第5条 委員会は，委員長が招集し座長となる。
（幹 事）
第6条 委員会に幹事を置く。
2 幹事は，委員長の命を受け委員会の本務について委員を補佐する。
（庶 務）
第7条 委員会の庶務は，商工労働部地域経済領域産業創出グループにおいて処理する。
（委 任）
第8条 この要綱に定めるもののほか，委員会の運営等に関し必要な事項は，委員長が定める。

附 則
この要綱は，平成 4 年 4 月 1 日より施行する。
附 則
この要綱は，平成6年1月7日より施行する。
附 則
この要綱は，平成 7 年 1 月 13 日より施行する。附 則
この要綱は，平成10年6月1日より施行する。附 則
この要綱は，平成13年4月1日より施行する。附 則
この要綱は，平成16年2月24日より施行する。

4－2 委員（平成18年度）

団 体 名	職 名	氏 名
福島県商工労働部	地域経済領域総括参事	森合 正典
東北経済産業局産業部	産業技術課長	菅井 克明
独立行政法人産業技術総合研究所東北センター	ものづくり基盤技術支援室長	松永 英之
福島大学	副学長	小沢 喜仁
日本大学工学部	教授•学術研究委員会副委員長	奥山 克彦
会津大学 産学イノベーションセンター	産学連携コーディネーター	本杉 常治
日本銀行福島支店	総務課長	橋本 和弘
福島県中小企業団体中央会	副会長	丹野 一男
福島県鉄工機械協同組合連合会	理事長	藤橋 進一郎
郡山電子工業協同組合	理事長	古川 開
福島県縫製品工業組合	理事長	石井 眞
福島県酒造協同組合	技術副委員長	佐藤 和典
民間企業代表者 6名		

5 福島県ハイテクプラザ技術課題検討会議

5－1 設置要領

（趣 旨）
第1条 県内中小企業等の技術課題の解決及び技術力の向上を図り，県内の中核となる先端的中小企業等の育成を推進す るため，福島県ハイテクプラザ技術課題検討会議（以下「会議」という。）を設置する。
（業 務）
第2条 会議においては，次の各号に掲げる事項について協議する。
（1）ハイテクプラザ長期研究計画書に基づく研究方針
（2）ハイテクプラザ研究計画の検討，研究結果の評価等
（3）その他県内企業の育成に必要な事項
（構 成）
第3条 会議は，次のものをもつて構成する。
（1）学識経験者
（2）産業技術総合研究所東北センターの職員
（3）県内企業の有識者
（4）関係機関の職員
（5）福島県の職員
（会 長）
第4条 会議には会長をおき，ハイテクプラサ所長をもつて充てる。
2 会長は，会議を代表し座長となる。
3 会長が出席できない場合は，会長が指名する者がその職務を代行する。
（会 議）
第5条 会議は，会長が召集する。
（分科会）
第6条 第2条に掲げる事項について協議するため，次の技術分科会（以下「分科会」という。）を置く。
（1）電子応用技術分科会
（2）材料応用技術分科会
（3）生産技術分科会
（4）地場産業高度技術分科会
（5）繊維材料応用技術分科会
2 分科会の実施については，別途定める。 （庶 務）
第7条 会議の庶務は，ハイテクプラザにおいて行う。
（委 任）
第8条 この要領の定めにない事項については，会長が別に定める。

附 則
1 この要領は，平成8年4月1日から施行する。
2 この改正要領は，平成14年6月10日から施行する。

5－2 委員（平成18年度）

会 社 名－団 体 名	職 名	氏 名
独立行政法人産業技術総合研究所東北センター福島大学 地域創造支援センター 会津大学 産学イノベーションセンター日本大学工学部 郡山女子大学短期大学部 福島県鉄工機械工業協同組合 郡山地域テクノポリス推進機構 地域戦略ニューメディア・コミュニティ事業推進 福島県プラスチック工業会 福島県食品産業協議会 福島県縫製品工業組合 福島県産業振興センター 福島県商工労働部産業創出グループ 福島県ハイテクプラザ	所長代理 副センター長 産学連携コーディネータ 教 授 教 授 理事長 副会長 会長代理 会 長 理事長 常務理事 参 事 所 長	板橋 修 丹治 惣兵衛 本杉 常治 横田 理 近藤 榮昭 藤橋 進一郎 高木 茂保 小玉 武 岸 秀年 石井 眞 上村 和彦 藤島 初男 宮野 壯太郎

6 福島県ハイテクプラザの概要

6－1 沿革（1）

明冶34年4月信夫郡渡利村に生系織物試験場を設立
明治35年 3月 福島県工業試験場と改称
大正11年 4月 岩瀬郡須賀川町に福島県醸造試験場を設立。同年10月伊達郡川俣町に福島県工業試験場川俣分場を設置
昭和 3年 2月 会津若松市県立工業学校内に漆器木地•木工部からなる福島県漆器工芸研究所を設置。同5年4月同研究所を福島県工業試験場会津分場と改称し，醸造•染織•図案•漆工部を増設。同時に福島県醸造試験場を廃止
昭和 8年 4月 福島県工業試験場を廃止し，会津分場を福島県会津工業試験場に，川俣分場を福島県川俣試験場 に改称
昭和10年4月 川俣試験場に図案部を併設
昭和11年 4月 大沼郡本郷町に会津工業試験場窯業部を設置
昭和19年4月 川俣試験場を福島県川俣工業指導研究所と改称し図案部を廃止，会津工業試験場より染織部を施設合併する
また，会津工業試験場を福島県会津工業研究所と改称し，漆工•木工•窯業醸造•図案部を設置
昭和21年1月福島市に福島県工業試験場を設立。同年3月福島県川俣工業指導研究所を福島県工業試験場川俣分場と改称
同年 4 月福島県会津工業研究所を福島県工業試験場会津分場と改称
昭和22年 3月 福島県工業試験場会津分場の窯業部を福島県窯業試験場として大沼郡本郷町に分離独立
昭和 22 年 4 月 福島県工業試験場会津分場を福島県会津工業試験場と改称，漆工•木工•醸造•図案部を設置
昭和23年 3月 福島県工業試験場を工芸指導所と改称。同時に川俣分場を福島県川俣染織試験場と改称
昭和24年3月福島県工芸指導所を廃止，窯業試験場を陶業試験場と改称。同年 4 月福島市栄町に福島県機械工業指導所の仮事務所を設置。10月同市三河南町に機械工業指導所の庁舎を建築完成。同年 7 月川俣染織試験場を染織試験場に，会津工業試験場を工芸試験場にそれぞれ改称
昭和25年4月 陶業試験場相馬分場を相馬郡浪江町に設置
昭和 25 年 6 月 機械工業指導所の鋳物工場増設。翌年 6 月機械工場増設
昭和28年11月 工芸試験場醸造部を福島県醸造試験場として独立
昭和31年6月 陶業試験場•陶業試験場相馬分場を工芸試験場に統合
昭和34年4月染織試験場を繊維工業試験場と改称。12月同場本館新築落成。同37年6月同場実験棟•研究室棟新築落成
昭和44年 4月 会津若松市門田町に，工芸試験場の新庁舎完成移転。翌年4月醸造試験場同地に移転
昭和45年 3月福島市佐倉下（現在地）に，機械工業指導所の新庁舎完成移転。同年 11 月繊維工業試験場同地 に移転
昭和45年 4月 福島県工芸試験場と福島県醸造試験場を併合，機構を改め，福島県会津若松工業試験場と改称
昭和45年12月 福島県機械工業指導所と福島県繊維工業試験場を併合し，機構を改め，福島県福島工業試験場と改称
昭和48年 4月 福島工業試験場に技術情報室および会津若松工業試験場に同分室を設置
昭和49年7月福島工業試験場に溶接実験棟増設
昭和50年 3月 会津若松工業試験場に食品加工開放試験室増設
昭和53年 3月 会津若松工業試験場に合成樹脂開放試験室増設
昭和54年12月 会津若松工業試験場に窯業開放試験室増設
昭和55年4月技術情報室を廃止し，福島工業試験場に企画情報部を設置，会津若松工業試験場に工芸部デザイ ン科を設置
昭和58年 4月 いわき市常磐に福島県いわき工業試験場を設立。福島工業試験場に機械金属部先導的技術指導研究班を設置
翌年4月同班を改め応用電子科を設置
昭和60年4月福島工業試験場機械金属部•化学部を改め機械電子部•工業材料部に，金属材料科を改め金属科 に改称
昭和62年 3月 会津若松工業試験場に合成樹脂開放試験室増設
平成 4年 4月 郡山市片平町に福島県ハイテクプラザを設立。同時に 3 工業試験場の機構を改め，それぞれ福島県ハイテクプラザ福島技術支援センター，同会津若松技術支援センター，同いわき技術支援セン ターと改称
平成 6年 4月 ハイテクプラザ応用技術部に微生物応用科を設置
平成13年4月 会津若松市一箕町（現在地）に，会津若松技術支援センターの新庁舎完成移転
平成16年4月ハイテクプラザ，各技術支援センターの部科制を廃止し，グループ制組織に移行

6

明34． 4

明35． 3
大 11.4
大11．10
昭 3.2

昭 5.3
昭 8.4
昭10．4
昭11．5

昭19． 4

昭21．1

昭22．4
昭22．7
昭23． 3

昭24．3
昭24．4

昭24．7
昭24．10

昭 25.4
昭28．11
昭31．6

昭34． 4

昭45． 4

昭45．12
昭47．5
昭58．4

平 4.4

平13． 4

生糸織物試験場設立（信夫郡渡利村）
県工業試験場と改称

6－2 規 模

（単位： m^{2} ）

機 関			建 物		
	所 有 者	面 積	名 称	仕 様	延 面 積
ハイテクプラザ	郡山市 （無償貸与）	46，113．62	本館 電子系実験棟 機械室 車庫	鉄筋コンクリート4階建 鉄筋コンクリート平屋建 鉄筋コンクリート平屋建 鉄骨造り平屋建	9， 852.49 343.16 29． 80 111.10
			計		10，336． 55
福島技術支援 センター	福島県	7，924．21	本館 実験棟 溶接実験棟 機織実験棟引張実験室 ボイラー室 車庫 物置 用務員控室 物置 キュービクル	鉄筋コンクリート2階建鉄筋スレート葺鉄筋コンクリート平屋建鉄筋コンクリート平屋建鉄筋スレート葺鉄筋コンクリート平屋建鉄筋コンクリート平屋建 コンクリートブロック平屋建木造平屋建木造平屋建鉄板造り平屋建	$\begin{array}{r} \hline 2,133.64 \\ 435.66 \\ 170.34 \\ 123.48 \\ 66.45 \\ 33.67 \\ 70.52 \\ 38.88 \\ 51.34 \\ 3.31 \\ 13.02 \end{array}$
			計		3，140．31
会津若松技術支援 センター	福島県	11，770．52	本館車庫駐輪場機械室	鉄筋コンクリート造 + 鉄骨造 ＋木造 （エントランスホール部） 2階建	4， 159.63 111.94 12． 88 3． 19
			計		4， 287.64
いわき技術支援 センター	福島県	10，143． 00	本館 実験棟 車庫・ポンプ室	鉄筋コンクリート2階建鉄骨造平屋建	$\begin{aligned} & 914.30 \\ & 505.50 \\ & 136.20 \end{aligned}$
			計		1，556． 00

6－3 設備•機器

6－3－1 平成18年度購入主要設備機器（100万円以上の機器）

（1）ハイテクプラザ

機 器 名	メーカー名	型 式	備考
電源評価システム	日本テクトロニクス（森）	DP0 7054	18電
高倍率金属顕微鏡	オリンパス（林）	GX－71	18県
精密LCRメータ		E4980A	18県
X 線光電子分光分析装置	アルバックファイ（森）	QUANTUM2000（XPS，ESCA）	18県
X 線回折装置	理学電機（株）	RINT2500VHF／PC	18県
G C／M S	$\begin{aligned} & \text { バリアンジャパン(森, サー } \\ & \text { モクエスト(森) } \end{aligned}$	Saturn2000，LCQ Duo	18県
I C P 発光分析装置	（林堀場製作所	JY238ULTRACE	18県
低真空走査型電子顕微鏡	（林）日立製作所	S－3500N	18県
恒温恒湿槽	エミック（株）	VC－102DWMX（53S）P2R	18電
ガス腐食試験機	スガ試験機（林）		18電

（2）会津若松技術支援センター

機 器 名	メーカー名	型 式	備考
湿乾両用粉砕機	$\begin{aligned} & \text { グローバルエンジニアリン } \\ & \text { グ森) } \end{aligned}$	マルチミルRD1－15型－4S	18電
味認識装置	$\begin{aligned} & \text { (森インテリジェントセン } \\ & \text { サーテクノロジー製 } \end{aligned}$	SA402B	18電

6－3－2 主要設備機器（昭和63年度～平成17年度購入の100万円以上の機器）

（1）ハイテクプラザ

機 器 名	メーカー名	型 名	備考
プレス機	（森東洋精機製作所	MP－SCH	17電
非接触三次元測定装置	三鷹光器（株）	NH－3SP	17電
イオンクロマトグラフ	Dionex社製	ICS－2000	17電
監視制御ネットワークシステム	$\text { \| } \begin{aligned} & \text { ジュニパーネットワーク } \\ & \text { ス森 } \end{aligned}$	NetScreen－1005B	17電
マイクロコンピュータ開発ツー	（林）日立超LSIシステムズ	MSEZDBG02－SET	17電
実体顕微鏡	オリンパス（株）	SZX12－3111SP	17県
2軸押出機用サイドフィーダ	テクノベル	$\begin{aligned} & \text { WTF-152-FK SFD-152-FK SFD- } \\ & \text { 15B-FK } \end{aligned}$	16電
表面粗さ・輪郭形状統合測定機	（株東京精密	サーフコム3000A－3DF－DX型	16電
ショナー	（株デバイス	DM2302CV2／0－S	16電
射出成形機	バッテンフェルド社	Microsystem 50	16電
熱分析装置	TAインスツルメント（森）	SSC5020MIII	16県
電界放射型走査顕微鏡	日本電子（株）	JSM6320F	16県
波長分散型X線分析装置	フィリップス社	pw2400	16県
微細放電加工機	三菱電機（森）	C11EX／FP35E	16県
レーザ干渉計	キャノン販売（林）	GPI－XP	16県
DNAシーケンサ	アロカ（森	MODEL4200L－1	16県
超臨界抽出装置	日本分光	木材中タンニン抽出システム	15電
粒度分布・ゼータ電位測定装置	大塚電子	ELS－8000	15電
分光蛍光光度計	日立製作所	F－4500	15電
凍結乾燥機	日本フリーザー	BFD－6F2	15電
電流反転電源	（森千代田	Duty－0． 1	15電
RFスパッタ装置	（株東栄科学産業	SPT－4STD	15電
ダイシングソー	（株ディスコ	DAD522	15電
酸素アッシング装置	（森サムコインターナショ ナル研究	PX－250HG	15電
赤外線照射装置	東京精工（株）	BFT－S11AC	15電
ロックインアンプ	NF回路ブロック	LI5640	15電
リアルタイムワークショップ	サイバネットシステム（森）	Real－Time Workshop	15電
万能試験機用データ処理システ ム	島津製作所	TRAPEZIUM2	15電
恒温恒湿槽	（株いすゞ製作所	HP－120－35	15電
試料切断機	平和テクニカ	HS－45A II	15電
研磨機	ワーツビューラー社	フェニックス4000	15電
蛍光X線微小部膜厚計	日本電子	JSX－3600M	15電
EMI測定システム	（株東陽テクニカ	TS9949	15電
静電気許容度試験機	（株ノイズ研究所	ESS－2002	15電
高速度ビデオカメラ	（森ナックイメージテクノ	HSV－4000	15電
三次元座標計測解析システム	（株東京精密	UMESS／LX	15電
グロー放電発光分析装置	堀場製作所	JY－5000RF	14電
アナログシミュレータ	アンソフト・ジャパン（森）	RF BoadDesignerPro	14電
ICPエッチング装置	（株エリオニクス	EIS－700SI	14電
熱刺激電流測定装置	（株東洋精機製作所	No． 650	14電
二軸混練押出機	テクノベル	KZW15－45MG	14電
レオロジー可視型ホットステー ジ	リンカム社	CSS－450	14電
ビデオ会議システム	POLYCOM社	ViewStation	13国
ATMアナライザ	（森コムワース	PrismLite	13国
ISDN擬似交換機	（株大興電機	INet－5000	13国
生体信号解析ソフト	NEC三栄（株）	BIOanlys II	13電
3次元動作解析システム拡張ユ ニット	（森）	Lib－GBCL	13電
床反力計	共和電業（森）	M00－0680	13電

機 器 名	メーカー名	型 名	備考
体圧分布計測システム	ニッタ（森）	High－Reso MAT	13電
アルゴリズム開発ツール	サイバネットシステム（森）	MATLAB	13電
モータ制御回路評価システム	$\text { (} \begin{aligned} & \text { システムデザインサービ } \\ & \text { ス森) } \end{aligned}$	PCI－DSP6701F	13電
モータトルク計測システム	（株菅原研究所	PC－EMA1－W1	13電
モータ評価用電源システム	菊水電子工業林）	PCR4000W	13電
伝導性妨害試験システム	EMテスト社	VCS500，CWS500	13電
精密LCRメータ	$\left\lvert\, \begin{aligned} & \text { アジレント・テクノロー } \\ & \text { ジー林 } \end{aligned}\right.$	4285A	13電
微少エミッション測定装置	（株ノイズ研究所	ESV－3000e	13電
Dコードマルチシステム	日本バイオ・ラッドラボ ラトリーズ株)	Dcodeマルチシステム	13電
超高速遠心分離機	日立工機（株）	CS150GX	13電
大容量遠心分離機	日立工機（株）	CR22G	13電
ファイバー・リピッド定量装置	アクタック社	FIWE6／SER－148－6	13電
パージアンドトラップ装置	ジーエルサイエンス（森）	CP4010	13電
ガス置換型粉体密度測定装置	カンタクローム社	ウルトラピクノメータ1000	13県
NetRanger	日本シスコシステムズ（株	Cisco NetRanger	12国
Switching HUB	日本シスコシステムズ（株	Catalyst 400	12国
PCデータベース	日本オラクル（林）	Oracle8i WorkgroupServer	12国
Realserver	リアルネットワークス森）	RealServer Professional	12国
FIREWALL（PIX）	日本シスコシステムズ（株	PIX FIREWALL 515－UR	12国
スペクトラムアナライザー	（森アドバンテスト	R3273	12国
ディジタルオシロスコープ	岩崎通信機株）	LC574AL	12国
電磁界シミュレータ	アンソフト・ジャパン（森）	Ansoft HFSS	12国
PLD，FPGA開発支援ツール	$\begin{aligned} & \text { データ・アイ・オー・ } \\ & \text { ジャパン(株) } \end{aligned}$	UNISITE－68－式	12電
DSP開発支援ツール	$\begin{aligned} & \text { 日本テキサス・インスツ } \\ & \text { ルメンツ(木⿰木木木)} \end{aligned}$	Code Composer統合開発環境	12電
\|エンジニアリング・ワークス	（森富士通	GP400モデル60	12電
磁場解析ソフトウェア	アンソフトジャパン（株）	Maxwell 2D Pro 一式	12電
FFTアナライザ	（株小野測器	CF－3400J	12電
EMI自動測定システム	（株東陽テクニカ	EMI測定システム	12電
イミュニティ試験システム	松下インターテクノ（森）	－	12電
体圧分布測定システム	ニッタ（株）	High－ResoMAT	12電
大変位センサ	エミック（株）	DC－750	12電
3 次元動作解析システム	（株ライブラリー	LB－640D3S	12電
人間工学的評価装置	NECメディカルシステムズ （森）	MT11	12電
2次元電気泳動システム	$\text { \| } \begin{aligned} & \text { 日本バイオ・ラッドラボ } \\ & \text { ラトリーズ森 } \end{aligned}$	電気泳動システム画像解析シス	12電
FPLCシステム	PEバイオシステムズジャ パン（森	VISION	12電
ディジタルスコープ	NEC三栄（森）	RA1200	12県
$\begin{aligned} & \text { HDLグラフィカル・エントリ・ } \\ & \text { ツール } \end{aligned}$	$\begin{aligned} & \text { メンター・グラフィック } \\ & \text { ス・ジャパン森) } \end{aligned}$	Renoir	11国
タイムドメイン計測システム	$\left\lvert\, \begin{aligned} & \text { アジレント・テクノロー森 } \\ & \text { ジー } \end{aligned}\right.$	8720ES	11国
基板メーカー	ミッツ（森）	FP－7	11国
紫外線照度計	（森相馬光学	S－2400	11電
高温顕微鏡	真空理工（株）	MS－E1S	11電
CNC工具研削盤	株）宇都宮製作所	TGR－100A	11電
ターンテーブル	石川島播磨重工業（森）	THNC－301	11電
分解モデルプラント	宝化成機器株）	TK－α	11電
精密砥石切断機	平和テクニカ（木木木木1）	SP310	11電

機 器 名	メーカー名	型 名	備考
万能測長機	Mahr	828CiM	11電
粉体加熱装置	アジア理化器森）	＜特注品〉	11電
無電解ニッケルメッキ排水シス	（林郡山化学品販売	＜特注品〉	11電
BOD 測定装置	セントラル科学（森）	BOD－3000	11電
マイクロスコープ	（森ハイトロン	KH－2700STD	11電
論理検証デバックシステム	（株図研	Aptix System Explorer MP3A	10国
DSP開発ツール	住商電子デバイス（森）	コード・コンポーザー	10国
レーザー薄膜除去装置	ベルギーオプティク社	ATLEX－200i	10国
熱画像解析装置	NEC三栄（森）	TH3103SP	10国
超純粋洗浄システム	本田電子（森）	HU－5100	10国
ワイヤボンダ	（森完エレクトロニクス	7460A	10国
超微細放電加工機	松下電器産業森）	MG－ED82W	10国
ドライエッチング装置	（株エリオニクス	EIS－200ER	10国
電子線描画装置	（株エリオニクス	ELS－3700S	10国
露光装置	ユニオン光学森）	PEM－800	10国
クリーンブース（大）	（株）ダルトン	DCR－1000A	10国
クリーンブース（小）	（森）ダルトン	DCR－1000	10国
ボールオンディスク型摩擦摩耗試験機	ナノテック（林）	TRIBOMETER	10電
キャピラリー電気泳導システム	横河アナリティカルシス テムズ森	G1620A	10電
超高速加工機	株牧野フライス	HYPER－5	10電
工具顕微鏡	（株ニコン	MM－40／2T	10電
FFTアナライザー	（株小野測器	DS－9100	10県
任意波形発生装置	ソニーテクトロニクス（森）	AWG2005	10県
真空熱処理炉	（株島津製作所	PVSGgr 20／20	9国
デジタルシグナルプロセッシン グワークシステム	$\begin{aligned} & \text { メンター・グラフィック } \\ & \text { ス・ジャパン(森) } \end{aligned}$	DSP STATION	9国
ASIC設計用論理合成ツール	\|×ンター・グラフィック	LEONARD	9国
超高速HDLシミュレータ	\| メンター・グラフィック	Quick HDL	9国
無機薄膜形成装置	日本真空技研森）	VEP－1000	9国
エリプソメータ	日本真空技研森）	ESM－1A	9国
赤外線加熱導入装置	（林サーモ理工	GVH－198	9県
圧力画像解析システム	富士フィルム（林）	FPD－901EX	9県
有機薄膜形成装置	日本真空技術森）	VEP－1000	8電
恒温恒湿装置	日本エアテック（森）	空冷式	8国
FPGA設計システム	$\begin{aligned} & \text { データ・アイ・オー } \\ & \text { ジャパン(森) } \end{aligned}$	STATE－VHDL	8県
ロジックアナライザ	ソニーテクトロニクス（森	TLA510－06	8県
電子回路設計用CAD	兼松エレクトロニクス（森）	THEDA4． 0	8県
分光測色計	ミノルタ（林）	CM－508d	8県
非接触型形状測定器	アサカ理研工業株）	ALMS－TR01	8県
高圧注液装置	（森ジェーイー	F－2000NL	8県
インターネット闚覧機器一式	富士通株	FMV5DH1	7国
細胞電位計測装置	LIST／HEKA社	EPC－7	7 電
レーザロボット	石川島播磨重工業（森）	iLS－YC－20A	7 電
粉体供給装置	（森セイシン企業	AD－4601B－500G	7 電
近赤外分光光度計	（森ニレコー NIR Systems	NIRS6500	7 電
窒素ガスインキュベーダ	（森ヒラサワ	CP02－171	7 電
紫外可視分光光度計	日本分光（林）	V－570DS	7 電
プロテインシークェンサ	森パーキンエルマージャ	492－01	7 電
クライオステージ	日本電子（株）	SM－31210	7 電
キャピラリー電気泳動装置	$\text { \|横河アナリティカール } \begin{aligned} & \text { テムズ } \end{aligned}$	G1602A	7 電
金型研磨装置	アスター工業林）	〈特注品〉	7国
非接触表面粗さ測定装置	KSオリンパス（林）	amg2	7国

機 器 名	メーカー名	型 名	備考
金型磨き力測定システム	日本キスラー（森）	9257B	7国
レーザドップラ振動計	（株小野測器	LV－1000	7国
VMEバスコンピュータ	日本モトローラ（株）	MVME162－263	7国
シンセサイズド標準信号発生器	$\left.\right\|_{\text {(森) }} ^{\text {匕ューレットパッカード }}$	HP8643A	7国
任意波形発生装置	東亜電波工業森）	FS2131	7国
DNA／RNA抽出装置	\|株パーキンエルマージャ	Model 341	6 電
電気泳動装置	$\text { \| } \begin{aligned} & \text { 日本バイオ・ラッド・ラ } \\ & \text { ボラトリーズ森 } \end{aligned}$	CHEF Mapper XAチラーシスデ	6 電
生物顕微鏡	オリンパス光学工業（株）	AHBS 3－F SET	6 電
レーザ生物顕微鏡	\| 旦本バイオ・ラッド・ラ	MRC1000－SF	6 電
バイオセンサ装置	ビー・エー・エス（森）	BAS 100B／W	6 電
真空乾燥装置	ヤマト科学（森）	DP63	6 電
PCRシステム（遺伝子増幅装置）	\|株パーキンエルマージャ	Model 9600	6電
非接触あらさ計	（森東京精密	E－DT－SL05A	6 電
高速精密旋盤	株池貝	AM20	6 電
超精密成形平面研削盤	長島精工（株）	NAS420－CNC	6 電
細胞融合装置	BTX社	ECM200，ECM600	6 電
ガスクロマトグラフ	（株）日立製作所	G－5000	6 電
オシロスコープ	(森)	TDS684A	6国
$\begin{aligned} & \text { グラフィック・ワークステー } \\ & \text { ション } \end{aligned}$	ダイキン工業森）	C0MTEC4D	6国
DSP開発装置	日本モトローラ（森）	DPE96000ADSX	6国
マスフィルター	日本真空技術森）	MASSMATE－100	6県
テストピース金型	（株モリヨシ	〈特注品〉	6県
オートクレープ（電気式）	（株平山製作所	HA－362M	5 電
バイオハザードルーム	日立冷熱（森）	〈特注品〉	5 電
自記分光光度計	セイコー電子工業（株）	SAS7500	5 電
マイクロマニピュレータ	（株島津製作所	MMS－20－R－CV	5 電
ガスクロマトグラフ	（森平山製作所	G－5000	5 電
ケルテックシステム	ティケーター社	KT－1A	5 電
コロニーカウンタ	（林）ニレコ	ルーゼックスF	5 電
遠心分離器	（株トミー精工	MRX－152	5 電
射出成形流動解析装置	ティフィック・エフ・イー	RAA測定システム	5国
射出成形CAEシステム	（株プラメデイアリサーチ	PLAMEDIA	5国
レーザーホログラフィ撮影装置	富士写真光機株）	FHM	5国
BOD測定装置	タイテック（森）	100F	5県
状態解析用ソフト	（森パーキンエルマー	PHI－MATLAB	5県
ダイナミック超微小硬度計	（株島津製作所	DUH－200	4 電
真比重測定装置	（森セイシン企業	MAT－5000	4 電
小型アーク炉	大亜真空技研森）	ACM－01	4 電
レーザ回折式粒度分析装置	（森セイシン企業	LMS－24	4 電
凍結粉㝃機	シーエムティ社	TI500ET	4 電
スクラッチ試験機	レスカ社	CSR－01	4 電
ロックウェル硬度計	（株アカシ	ATK－F2000A	4 電
イミュニティ自動測定システム	（株東陽テクニカ	TS－5010	4 電
超薄膜スクラッチ試験機	レスカ社	CSR－02	4 電
X線応力測定装置	（森リガク	PSPC／MSF	4 電
ディンプリング・マシン	サウスベイテクノロジー	STB 515	4 電
振動試験機	エミック（株）	F－2000BLH／FA	4 電
ラボプレス	（株）東洋精機製作所	NO． 594	4 電
熱衝撃試験機	タバイ・エスペック（森）	TSV－40ht	4 電
表面形状測定機	日本真空技術林）	DEKTAK303	4 電
オートクレーブ	耐圧硝子工業森）	TAS－1	4 電

機 器 名	メーカー名	型 名	備考
画像解析装置	旭化成工業（株）	IP－1000	4電
超高真空蒸着装置	日電アネルバ（株）	VT－43N	4電
電源電圧変動許容度試験機	（株）ノイズ研究所	VDS－230S	4電
デジタルマルチメータ	（株アドバンテスト	TR6871	4電
表面電位計	トレック・ジャパン（株）	MODEL－344	4電
ファンクションジェネレータ	$\underset{\text {（株）}}{\text { ソ }}$（枸	AFG2020	4電
振動解析装置	（株）小野測機	CF－6400	4 電
分極測定装置	北斗電工（株）	HZ－1A	4電
モーダル解析システム	（株）小野測機	CF－901S	4 電
ロックウェル硬度計（プラス チック用）	松沢精機（株）	DTR－FA	4電
精密万能試験機	（株）島津製作所	AG－10KNE	4電
P•V•Tテストシステム	（株）東洋精機製作所	NO． 633	4国
キャピログラフ	（株）東洋精機製作所	キャピログラフIC	4国
熱伝導率測定機	（株）東洋精機製作所	K－システムTMII	4国
イオン洗浄型ろう付け炉	（株テクノ大手	〈特注〉	4国
万能試料測定機（10t）	（株）島津製作所	UH－100KNA	3電
真円度測定機	（株）東京精密	ロンコム52B－550	3 電
三次元表面粗さ測定機	（株）東京精密	サーフコム575A－3DF	3 電
輪郭形状測定機	（株）東京精密	コンタレコード2600B	3 電
万能試料試験機（100t）	（株）島津製作所	UPMC550 CARAT	3 電
CNC三次元座標測定機	カールツアイス（株）	UHF1000KNA	3 電
紫外•可視自記分光光度計	（株）日立製作所	U4000	3電
マイクロコンピュータ開発支援	横河ヒューレット・パッ	64000UXシステム	3 電
装置	カード（株）	64000Uスシスム	3 电
投影機	オリンパス光学工業（株）	ITC－380M－15（S）	3電
恒温恒湿槽	（株）日立製作所	EC－10MHP	3 電
石定盤	（株）東京精密	BG－1020	3 電
実体顕微鏡	（株）	FS110T	3 電
金属顕微鏡	オリンパス光学工業（株）	PMG114Uユニバーサルタイプ	3 電
波形記録計	日置電機（株）	8850	3 電
動作解析用VTR	（株）	HSV－1000	3 電
恒温恒湿試験機	楠本化成（株）	FH－05C	3電
管状炉	三菱化成（株）	QF－02	3電
万能衝撃試験機	（株）東洋精機製作所	I．C．T	3 電
恒温器	楠本化成（株）	HT320	3 電
タレット型立フライス盤	（株静岡鉄工所	ST－BC	3 電
直立ボール盤	（株ヤマモト	YSDT－550	3 電
6軸微小力センサ	日立建機（株）	LSA6010A－A	3 電
音響測定システム	ブリューエル・ケアー社	2133A	3電
大型防振台システム	昭和電線電螺（株）	OSD－3015－RSN	3 電
研磨機（ベルダー）	リファインテック（株）	ウエットベルダーDGA－228	3電
画像データファイリングシステ	富士通（株）	S－4／2（407GH43）	3電
CNC旋盤	オークマ（株）	LB－15C	3 電
CADシステム	横河ヒューレット・パッ カード森	ME－10	2国
プロトコルアナライザ	安藤電気（株）	AE－5105	2国
デジタルマルチメータ	（株アドバンテスト	TR6871	元国
蛍光X線微小部膜厚計	セイコー電子工業（株）	SFT8000	元国
デジタルストレージスコープ	岩崎通信機（株）	DS8631	元国
熱分析装置	セイコー電子工業（株）	SSC5020MIII	63 自
データ集録制御システム	横河ヒューレット・パッ カード（森	3852A	63国
波形記録計	（株）日置電機	HIOKI－8850	63国
イオンプレーティング装置	真空冶金（株）	IPB10／20A	63国

リース機器名	メーカー名	型	名
$\begin{aligned} & \text { パーソナルコンピュータネット } \\ & \text { ワークシステム } \end{aligned}$ LC／MS 構造解析システム 電子線プローブマイクロアナラ イザ コンピュータシステム X線CTスキャンシステム 顕微FT－IRラマンシステム 強エネルギー型ウェザーメータ 走査型レーザ顕微鏡 タレットパンチ クリープ試験機 振動試験機	$\begin{aligned} & \text { サーモクエスト(株) } \\ & \text { サイバネットシステム(森) } \end{aligned}$ （侏島津製作所 富士通（株） （株島津製作所 サーモクエスト（株） （株スガ試験機 （株島津製作所 日清紡（森） （森才リエンテック エミック（株）	LCQDuo ANCYS／Mechanical EPMA－1610 SMX－225CT ContinvumtAlmega SX－75 OLS1100 HTP－650 CP3－L－1kN F－2500BDH／LA25	

（2）福島技術支援センター

機 器 名	メーカー名	型 名	備考
焼結炉	（森モトヤマ	DC－8080	17電
高速液体クロマトグラフ分析装置（アミノ酸分析装置）	Dionex	ICS－3000	17電
ミキサーミル	（株）レッチェ	MM301	17電
カーボン蒸着装置	日本電子株）	JEC－560	17電
積層材料縫合機	岩瀬プリンス（林）	SPX－100－CNC	15電
自動変換送りカバリング機	（名）苅金機械製作所	KO－U－HT	15電
超音波映像装置	日立ファインテック（森）	mi－scope hyper II	14電
デジタルマイクロスコープ	（森キーエンス	VH－8000	14電
超低温恒温恒湿装置	（林）カトー	SSE－74TR－A	14電
衣服シミュレーションシステム	東洋紡績（株）	DressingSim for Maya	13電
エアー交絡系加工機	（有）小塚	－	13電
サーモグラフィー装置	NEC三栄（株）	TH7102WX	13電
分光測色計	日本電色工業森）	NF－999	13電
精密万能自動切断機	平和テクニカ（木木木木）	HS－45A II	13県
自動リンキングマシン	（森）ニーズプロダクト	SOL－NP2000	12電
衣服環境測定装置	カトーテック（森）	KT－100	12電
冷却装置	（森マックサイエンス	CU9400	12電
産業廃水処理システム	（有）小塚	K－300	12電
乾燥機	（有）小塚	K－2－3－6	12電
研削盤	（森三井ハイテック	MSG－200H1	12県
高温高圧染色機	（有）小塚	K－8ND	11国
横編みニット生地仕上げ機	直本工業（株）	NK－1FHS	11国
チーズ染色機	（有）小塚	K－1－2－6	11国
ショットピーニング処理装置	（株不二機販	P－SGF－4（A）	10国
摩擦摩耗試験機	高千䄼精機（ ${ }^{\text {（ }}$ ）	TRI－S－50W－N	10国
グローブボックス	$\begin{aligned} & \text { (有)ユナイテッドインスト } \\ & \text { ルメンツ } \end{aligned}$	UN－800F	10国
プログラムマッフル炉	デンケン（林）	KDF75	10電
デジタルオシロレコーダ	NEC三栄（森）	DE1200IF－1	10電
ディップコータ	（株）加藤機械製作所	ゾルゲルディップコータ	10電
コンピュータ横編機	（株島精機製作所	SWG FIRST 104	10県
二軸応力試験機	カトーテック（林）	KT－G2	10県
無製版プリントシステム	（株島精機製作所	SIP－120	10県
乾燥空気供給装置	ワットマン	74－5041	10県
圧縮試験機	カトーテック（森）	KT－3	9国
オートメジャー	カトーテック（林）	KT－6	9国
偏光顕徵鏡	オリンパス光学工業株）	BX50－31SP	9国
元素分析装置	日本電子（森）	JED－2140	9国
熱分析装置	（森マックサイエンス	DSC3100SR／TG－DTA2010S	9国
物性試験機	直本工業（株）	NST－10／15	9国
含有水分率測定用乾燥機	インテック（森）	IT－MM6	9国
分光光度計	（株島津製作所	UV－2500PC	9国
ミクロトーム	ミクロトーム（森）	HM－325	9国
スポンジングマシーン	バイテック（林）	VA－6	8国
表面試験機	カトーテック（林）	KT－4	8国
恒温恒湿器	タバイエスペック（株）	PDR－4SP	8国
ファンシーアップツイスター	（株）共立機械製作所	FUT－30	8国
スペクトルデータベース	ニコレージャパン（森）	スペクトルデータ	8国
コンピュータ横編機	（森島精機製作所	SWG183－V	8 電
万能抗張力試験機	（森島津製作所	AGS－10KNG STD	8電
コンピュータ横編機	（株島精機製作所	SES122RT	8電
X線回折装置	日本フィリップス森）	X＇PERT－MPD	8 電
マイクロビッカース硬度計	（森アカシ	MVK－H100	8電
万能材料試験機	（株島津製作所	UH－100KNA	8 電
倒立型金属顕微鏡	オリンパス光学工業（森）	PMG3	8県
クーリングマシン	コールド技研森）	NC－500	8県

機 器 名	メーカー名	型	備考
マルチペンレコーダー	横河電機㑣）	0R1400	8県
自動研磨機	BUEHLER社	フェニックス4000	8県
自動精密切断機	Struers社	アキュトム5	8県
インターネット閲覧機器一式	富士通（株）	FMV5DH1	7国
塩水噴霧試験機	スガ試験機森）	ST－IS0－3	7 電
走査型電子顕微鏡	日本電子（株）	JSM－5800LV	7 電
KES縫製管理システム	カトーテック（株）	KES－FBI－AUT0	7 電
FT－IR	ニコレージャパン（株）	Magna 550F	7 電
イオンクロマトグラフ	日本ダイオネクス株）	QIC	3 電
実体顕微鏡	ウイルドライツ社	M8	2自
表面粗さ測定機	\|ランクテーラーホブソン	S3F	2自
平滑度試験機	東洋精機（株）	No． 168	63県

リース 機 器 名	メーカー 名	
アパレル用CAD 型 名		

（3）会津若松技術支援センター

機 器 名	メーカー名	型 名	備考
ラピッドビスコアナライザー	フォス・ジャパン（森）	RVA－4	17電
インバクト衝撃試験機	リサーチアシスト（有）	RA－112	17電
表面形状測定機	（林東京精密	1400D－64	17電
摩擦係数測定機	（株東洋精機製作所	TR－2	17電
熱伝導率測定装置	英弘精機（株）	HC－074／S200	17電
レオメーター	山電株	RE2－3305S－1． 2	16電
非接触伸び計	JTトージ株）	SS－220D－F／P	16電
VOC測定用小型チャンバー	（有）アドテック	ADPAC SYSTEM	16電
アルデヒド分析システム	日本分光（株）	2000システム	16電
自転公転摚拌脱泡装置	クラボウ（株）	KK－2000	16電
ガスマス	バリア	Saturn2200	15電
機械ロクロ	近藤鉄工所	KT－CRS	15電
家具強度試験機	前川試験機製作所	SFT型	15電
全自動小型餅搗機	渡辺工業（株）	WK－315D	15電
熱分析機	理学電機工業（林）	ThermoPlus 2	15電
液クロ用蒸発光散乱検出器	島津製作所	ThermoPlus 2	15電
加温／冷却モロミタンク用レコー	横河電機	CX2610	15電
人間中心設計支援システム（コ ンピューターマネキン）	ティアック電子計測	quete 型	15電
把持力分布測定システム	ニッタ（森	グローブスキヤンシステム	15電
人間工学的評価システム	ティアック電子計測	Polymate AP1000	15電
AE解析システム	$\begin{aligned} & \text { 日本フィジカルアコース } \\ & \text { ティクス(森) } \end{aligned}$	Disp	15電
マイクロプレートリーダー （紫外部用）	バイオテック	MQX200	15電
マイコンほぞ取り盤	（森平安コーポレーション	MT－4型	15電
X線回析装置	フィリップス（森）	X’ Pert－PR0	14電
液体クロマトグラフ	日本分光	LC2000plus	14電
蛋白質蒸留／分解装置	フォスティケーター	2020－DS－20， 2200	14電
微弱発光測定機	東北電子工業	CLA－FS1	14電
におい識別装置	島津製作所	FF－1	14電
卓上型培養装置	（森丸菱バイオエンジ	MDL500型	14電
そば製粉装置	（株国光社	NC400SW	14電
マイクロ波流動乾燥機	（株クメタ製作所	CFM－0025型	14電
変角色彩計	日本電色工業森）	DDC－3000	14電
微生物顕微鏡	オリンパス	BX51－54－PHU－A	14電
微小硬度計	アカシ	HM－103	14電
研磨機	丸本ストルアス	ラボポール5	14電
精密切断機	平和テクニカ	ファインカットHS－45A II	14電
化学ミキサー	（森ダルトン	5XDMV－rr	14電
フローコーター	アネスト岩田	FL－S3G	14電
クラッシャー	フリッチュ	P－1	14電
遊星ボールミル	伊藤製作所	LP－4	14電
動的粘弾性測定装置	ハーケ社	レオストレスRS150H	13電
カップ用充填シール機	バンノー（株）	I．B－160	13電
小型ジェット粉砕機	（株セイシン企業	SYSTEM－$\alpha-\mathrm{mk}$ II	13電
乾式粉砕機	東京アトマイザー製造（森）	TASM－1	13電
振動式ふるい分け機	筒井理化学器械（森）	SW－20AT	13電
フーリエ変換赤外分光光度計	$\left\lvert\, \begin{aligned} & \text { サーモニコレー・ジャパ } \\ & \text { シ(森) } \end{aligned}\right.$	Nexus470	13電
ガスクロマトグラフ	（林）島津製作所	GC－2010AF	13電
生物顕微鏡	オリンパス（林）	AX80TRF	13電
マイクロフォーカスX線検査装置	ソフテックス（森）	SFX－100特型	13電
高速冷却遠心機	（森）日立製作所	CR－21G	13電

機 器 名	メーカー名	型 名	備考
水分活性測定装置	アクセール社	TH－500	13電
小型高温高圧調理殺菌機	三洋リビングサプライ（森）	LFS－CR75	13電
真空加熱成形機	（株小平製作所	PVS－50EA	13電
粉砕器	（株）西村機械製作所	JC－5	13電
小型NCルーター	（株シンクス	15ZXS－11－3－1005F	13電
酸化還元両用電気炉	東京陶芸器材森）	TY－12W－RF	13電
高温雰囲気炉	（株）モトヤマ	SHA－2025D	13電
大豆脱皮機	原田産業（株）	ST－05	12電
ジュール加熱テスト装置	森フロンティアエンジニ	1310－A	12電
分光蛍光光度計	（株島津製作所	RF－5300PC	12電
真空定温乾燥機	アドバンテック東洋（森）	V0－420	12電
電子顕微鏡	日本電子株）	JSM－5900LV	12電
加温冷却温度制御仕込タンク一式（モロミ用）	新洋技研工業森）	－	12電
味噌類試作製造プラント	永田醸造機械森）	－	12電
醸造用小型精米機	森チョヨダエンジニアリン	HS－20	12電
中型低温恒温恒湿器	森いすゞ製作所	$\mu-404 \mathrm{R}$（特）	12電
天幕式自動製鿺装置	中立工業（株）	－（3枚槽）	12電
低温除湿乾燥装置	（株）稲葉屋冷熱産業	IHP－06－4	12電
自記分光光度計	（株島津製作所	UV－2550	12電
自動菌数測定装置	東洋測器（株）	バイオマルチスキャナBMS－400	12電
万能試験機付属装置	（株島津製作所	TRAPEZIVM	12電
CG操作講習システム	Apple	Macintosh G4	12電
恒温恒湿器	三洋電機（株）	MTH－4400	12電
ケルテック自動蒸留装置	フォスティケイター	2300 A	12電
回転装置付き漆乾燥庫（回転風	カワシマ商事（林）	河和田式	12電
超低温フリーザー	日本フリーザー（森）	CL－522U	12電
ソックスレー脂肪抽出装置	フォスティケイター	2055	12電
凍結ミクロトーム	（森中川製作所	クライオトームCR－502	12電
クリーンベンチ	三洋電機（株）	MCV－B1315	12電
食物繊維分析装置	フォスティケイター	システムE	12電
ニーダー	（林やエス	SQN－50	12電
C02インキュベーター	タバイエスペック（森	BNA－121D	12電
吟醸こしき	（株中川製作所	H120502－1	12電
手押鉋•自動鉋兼用機	常磐工業（株）	VS－30AK	12電
帯鋸盤（オートバンドソー）	（株丸仲鐵工所	JB－M650S	12電
自動真空包装機	（森）エヌ・ピー・シー	F78－AN	12電
イオンスパッタ	（株）日立製作所	E－1010	12電
洗米水切用遠心分離器	（株岩月機械製作所	KM－3P	12電
CPドライヤー	日本電子（森）	JFD－310	12電
恒温振とう培養器	三洋電機（森）	MIR－220R	12電
パーティクルカウンター	リオン（株）	KC－03AI	12電
静歪み測定器	NEC三栄株	DC5200	12電
カッティングプロッター	ローランドデイジー（森）	CM－400	12電
アミノ酸アナライザー	日本電子（森）	TLC－500／N	12電
3次元CGシステム	IBM	IntelliStatio 2 Pro	12電
超低温フリーザー	タバイエスペック（森	BFH－122LR	12電
レーザー加工機	（森中沢商会	WIN－LASER M30	12電
原子吸光光度計	（株）日立製作所	Z－5010	12電
液体クロマトグラフ	日本分光（株）	GULLIVER	12電
高所作業台	アップライトジャパン（森）	CWP－15S	12県
温度サイクル試験機	林カトー	標準低温恒温恒湿装置SE型 77c1	9国

機 器 名	メーカー名	型 名	備考
促進耐侯性試験機	スガ試験機（森）	SUGA DPWパ ネルル光コントールウエザーメーター DPWL－5	9国
摩耗試験機	スガ試験機（森）	NUS－IS0－3	9国
ワイドベルトサンダー	アミテック（林）	NSE40－AV	9国
立体造形装置	森キラ・コーポレーショ	Solid Center ksc－50N	9国
大型耐侯性インクジェップリンター	（森エム・アイ・ジェイ	POP ART 900	9国
UV涂装照射装置	カシュー（株）	特注	8国
測色色差計	日本電色工業森）	ZE－2000	8電
製麺機	（林）大竹麺機	15型研究室用	8電
高速冷却遠心機	（株コクサン	H－7000SL	8電
ガスクロ用ヘッドスペースサン プラー	Tekmer 社	7050	8電
スプレードライヤー	柴田科学器械工業（森）	B－191	8電
レオメーター	（森サン科学	コンパック100型	8電
ドラフトチャンバー	（株）゙ルトン	DF－22AK	8電
水分変化測定装置	（森エーアンドディ	HF－6000	8電
マイクロスコープ	オリンパス光学工業（森）	OVM－1000N	8電
接着装置	（株太平製作所	P20－B型	8電
システムパネルソー	シンクス（株）	SZV－6000Z	8電
NC自動プログラミングシステム	協立システムマシン（森）	TASK－II	8電
インターネット閲覧機器一式	富士通（株）	FMV5DH1	7国
真空凍結乾燥機	（株宝製作所	〈特注品〉	7 電
自動粒度分布測定装置	（株セイシン企業	LA－910	7 電
小型超高温炉	戸田超耐火物森）	ミニファーネス	7 電
マルチスキャンコンバーター	（森フォトロン	PHOTORON／SUM1	7 電
2軸エクストルーダ	（林）日本製鋼所	TEX－F	7 電
高温高圧調理設備試験装置	（森）日阪製作所	RCS－40RTGN • FAN	7 電
CG編集曲面加飾装置	\|ハイデックエンジニアリ	HR－600ST	5国
CG編集製版装置	大日本スクリーン印刷（森	C0－607－B	5国
スーパーマスコロイダー	増幸産業森）	MKZA6－5	5県
小型精密CNC旋盤	（森北村製作所	KNC－100FR	4国
CGシステム		IRIS 4D／30TG	3国
万能試験機	（株島津製作所	AG－2000E	3県
原子吸光分光光度計	（林）日立製作所	Z－6100	2国
醪圧搾機	（株柏葉商会	ヤフタ式	2国

（4）いわき技術支援センター

機 器 名	メーカー名	型 名	備考
デジタルオシロスコープ	日本テクトロニクス（森）	TDS3034B	17県
ワイヤレスデータロガー	共和電業（森）	UCAM－40A	17電
表面粗さ測定機データ処理装置	（森ミツトヨ	SV－9624	17県
C A S 試験機	スガ試験機（株）	CAP－90	17県
フーリエ変換赤外分光光度計	日本分光（森）	FT／IR－6200	16電
蛍光X線分析装置	理学電機工業林）	ZSX100e	15電
材料試験機計測制御装置	（株島津製作所	UH－1型	14県
恒温恒湿器	タバイエスペック（森）	PR－2KP	13県
分光測色計	日本電色工業森）	SQ2000	11電
真空乾燥機	東京理化器機森）	VOS－300VD	11電
電解砥粒研磨装置	（株杉山商事	PIEP－10	11電
真円度測定器	（株ミツトヨ	RA－700	11電
照射分光器	日本分光（森）	CRM－FD	11電
ビーム分析装置	PROMETEC	UFF100	11電
モアレ3Dカメラ	（林）オプトン	－	11電
ワイヤー送給装置	三菱電機（株）	－	11電
炭酸ガスレーザー加工機	三菱電機（株）	ML806T3－5036D	10電
モノクロメーター	相馬工学	S－10	10電
電気化学測定装置	（有）ALS	660型	10電
マイクロウェーブ分解装置	日本ゼネラル（林）	ETHOS900	10電
走査型共焦点レーザー顕微鏡	オリンパス光学工業（森）	OLS1000	8 電
精密切断機	平和テクニカ（木木木）	HS－45A II－T	8電
マグネトロンスパッタリング装置	日本電子（林）	JFC－1300	8電
炭素硫黄同時分析装置	LECO CORPORATION	CS－400－SC－444	8電
三次元座標測定機	（森ミツトヨ	マイクロコードRV304	8電
自動研磨装置	BUEHLER社	フェニックス4000	8電
金属顕微鏡	オリンパス光学工業（森）	PMG3－114U	7 電
輪郭形状測定機	（株東京精密	コンタレコード2600C	7 電
表面粗さ形状測定機	（株ミツトヨ	サーフテストSV624	7 電
簡易型電子ブローブX線マイクロ アナライ゙	日本電子（森）	JSM－5800	7 電
ICP発光分光分析装置	セイコー電子工業（森）	SPS4000	3電
卓上型蛍光X線分析装置	セイコー電子工業（森）	SEA2001	3県
高速振動試料粉砕機	（森平工製作所	TI－100	2県
湿式高速試料切断機	島本鉄工（株）	SM • CUT－803C	元県

凡例 63県：昭和63年度県費により購入
16県：平成16年度県費により購入
元国：平成元年度国庫補助により購入
10電：平成 10 年度電源移出県等交付金により購入
2自：平成 2 年度日本自転車振興会補助により購入

7 福島県ハイテクプラザの位置（各技術支援センターを含む）

URL http：／／www．fukushima－iri．go．jp
E－Mail info＠fukushima－iri．go．jp

会津若松技術支援センター
〒965－0006 会津若松市一箕町大字鶴賀字下柳原88－1代 表 Tel．0242－39－2100 Fax．0242－39－0335食品技術グループ Tel．0242－39－2976•2977産業工芸グループ Tel．0242－39－2978

福島県ハイテクプラザ
〒963－0215 郡山市待池台1－12
連携支援グループ（代表）Te1．024－959－1741 Fax．024－959－1761
企画管理グループ Tel．024－959－1736
材料技術グルーブ Tel．024－959－1737
プロセス技術グループ Tel．024－959－1738
システムム技術グループ Tel．024－959－1739

福島技術支援センター
〒960－2154 福島市佐倉下字附ノ川 1－3
代 表 Tel．024－593－1121 Fax．024－593－1125
繊維•材料グループ Tel．024－593－1122

福島県ハイテクプラザ業務年報
 平成18年度実績（2006年度）

平成19年 9 月•発行

URL http：／／www．fukushima－iri．go．jp
E－Mail info＠fukushima－iri．go．jp
発行
福島県ハイテクプラザ
〒963－0215 郡山市待池台1－12
連携支援グループ 024－959－1741（代表）
企画管理グループ 024－959－1736
材料技術グループ 024－959－1737
プロセス技術グループ 024－959－1738
システム技術グループ 024－959－1739
F A X 024－959－1761

福島県ハイテクプラザ福島技術支援センター

〒960－2154 福島市佐倉下字附ノ川1－3
代 表 024－593－1121
繊維•材料グループ 024－593－1122
F A X 024－593－1125

福島県ハイテクプラザ会津若松技術支援センター
〒965－0006 会津若松市一箕町大字鶴賀字下柳原88－1
代
表 0242－39－2100
食品技術グループ 0242－39－2976•2977
産業工芸グループ 0242－39－2978
F A X 0242－39－0335

福島県ハイテクプラザいわき技術支援センター

〒972－8312 いわき市常磐下船尾町杭出作23－32
材 料グループ 0246－44－1475（代表）
F A X 0246－43－6958

編集
福島県ハイテクプラザ 企画管理グループ

[^0]: ※登録抹消，または抹消予定

