

Introduction

The Great East Japan Earthquake, which occurred on March 11, 2011 severely damaged the TEPCO Fukushima Daiichi Nuclear Power Station due to onslaught of a large tsunami that accompanied the earthquake. As a result, the fuel could not be cooled, and hydrogen, a flammable gas, which was generated, produced an explosion releasing radioactive substances, such as cesium and iodine, into the atmosphere. Fukushima Prefecture monitored environmental radiation before the Great East Japan Earthquake. After the earthquake, we have additionally installed measurement equipment, such as monitoring posts, added measurement points, and expanded the measurement area to enhance and strengthen our monitoring system.

What is radiation/radioactivity?

Monitoring of radiation in the environment in Fukushima Prefecture

Fukushima Prefecture measures the air dose rate $\overset{\times}{}$, analyzes radioactive substances contained in environmental samples (air, water, soil, etc.) and publishes the measurement results to ensure the safety and security of everyone concerned.

Monitoring the areas around the power plants

Fukushima Prefecture monitors the types, locations and levels of radioactive substances in the environment that came from nuclear power plants in the area.

Prefecture-wide monitoring

Fukushima Prefecture monitors various parts of the prefecture to keep track of the trends in contamination caused by the nuclear accident.

1 Monitoring of radiation in the environment

Measurement of environmental samples

We analyze radioactive substances contained in environmental samples, such as air, water and soil collected in the prefecture.

Measurement of air dose rate

Station-type monitoring post

To monitor the radioactive substances newly released into the environment from the nuclear power plants, we have installed 42 monitoring posts in the areas within approximately 30 km from the nuclear power plants.

2 Monitoring, analysis, evaluation and confirmation of data

Monitoring and analysis

Fukushima Prefectural Centre for Environment Creation (FPCEC) constantly monitors the air dose rate, and analyzes the collected and accumulated environmental radiation data.

Evaluation and confirmation

Fukushima Prefecture has set up an "Environment Monitoring Evaluation Subcommittee" to evaluate the monitoring data collected from around the nuclear power plants. The subcommittee is composed of experts in radiation management, environmental radioactivity and water resources studies, and the members from national, prefectural, and municipal governments who meet on a quarterly basis.

Measurement of air dose rate

Real-time dosimetry system

In order to monitor air

radiation dosage rates in areas where children gather, 2,870 units have been installed in schools, nurseries and other locations across the prefecture.

Portable monitoring post

We installed approximately 570 units in public facilities in the prefecture to grasp changes in the radiation level in the air.

Mobile monitoring

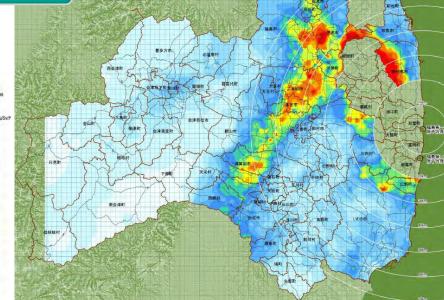
We use survey meters to measure the air radiation dose rate in places where many people gather, such as schools and sightseeing spots.

Car-borne survey

We installed radiation measuring devices in cars to measure the dose of radiation in the air along the driving route. We also installed the radiation measuring devices in some fixed-route buses for ease of radiation measurements.

Fukushima Prefecture website
Fukushima Prefecture Radioactivity Measurement Map, etc.

See page 11


*Air radiation dosage rate: Air radiation dosage is the amount (strength) of radiation in the air. This includes gamma radiation from the ground, cosmic radiation, etc. The air radiation dosage per unit of time (years, months, weeks, days, etc.) measured in a certain airspace is called the air radiation dosage rate.

Changes in air radiation dosage rate in Fukushima Prefecture

The air radiation dosage rate in Fukushima Prefecture has decreased significantly from that as of April 2011.

April, 2011

Created based on "Basic Map Information (Digital Elevation Model)", (The Geographical Survey Institute) and "National Land Numerical Information (Administrative Areas, Roads)" (The Ministry of Land, Infrastructure, Transport and Tourism National Land Policy Bureau)

Created based on the "Basic Map Information (Digital Elevation Model)", (The Geographical Survey Institute) and "National Land Numerical Information (Administrative Areas, Roads)" (The Ministry of Land, Infrastructure, Transport and Tourism National Land Policy Bureau)

%The results of the car-borne survey conducted in "Difficult-to-Return zone" from September to October , 2024 were added.

In the Nakadori and Hamadori regions, the effects of natural attenuation and decontamination of radioactive substances are definitely appearing. The Aizu region has been restored to the air radiation dosage level which existed before the nuclear accident.

Air dose rate in Fukushima Prefecture

Measurement Measurement date %1		Koriyama City	Shirakawa City	Aizu-wakamatsu City	Minamiaizu Town	Minamisoma City	lwaki City
Before the accident(2009)%3	0.04	0.04	0.04	0.05	0.04	0.05	0.06
Aplil 2011	1.91	1.83	0.67	0.19	0.08	0.63	0.37
September 2011	1.00	0.88	0.42	0.13	0.08	0.42	0.18
September 2012	0.69	0.51	0.21	0.09	0.06	0.37	0.10
September 2013	* 4 0.33	* 4 0.17	0.12	0.07	0.05	0.15	0.09
September 2014	0.24	0.14	0.10	0.07	0.05	0.12	0.08
September 2015	0.20	0.12	0.09	0.06	0.04	0.09	0.07
September 2016	0.18	0.10	*4 0.08	0.06	0.04	0.08	0.07
September 2017	0.15	0.09	0.07	0.05	0.04	*4 0.08	0.06
September 2018	0.14	0.09	0.07	0.05	0.04	0.07	0.06
September 2019	0.13	0.08	0.06	0.05	0.04	0.07	0.06
September 2020	0.13	0.07	0.06	0.05	0.04	0.06	0.06
September 2021	0.12	0.07	0.06	0.05	0.04	0.06	0.06
September 2022	0.12	0.07	0.06	0.05	0.04	0.06	0.06
September 2023	0.11	0.07	0.06	0.05	0.04	0.06	0.06
September 2024	0.11	0.06	0.05	0.05	0.04	0.05	0.06

%1 Monthly averages are listed (except for 2009).

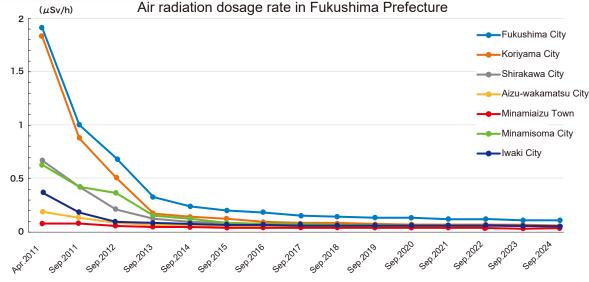
%2 Fukushima City is measured at Ken-poku Public Health and Welfare Office, and others are measured at the prefectural joint government building. (except for 2009)

 $\%3\,2009$ figures are the results of the radiation level survey.

Fukushima City : August 18, 2009 (Prefectural East Branch Office) Shirakawa City: August 11, 2009 (Shirakawa Joint Government Building) Minamiaizu Town: August 11, 2009 (Maruyama Park) Iwaki City: August 18, 2009 (Iwaki Joint Government Building)

¾4 Decontamination was conducted in Fukushima City and Koriyama City from April to May 2013, Shirakawa City inJune 2016, and Minamisoma City in December 2016.

%5 Difficult-to-return Zones are not included in the above measuring points.


Let's look at the graph

Currently, the entire prefecture is stable at a low value!

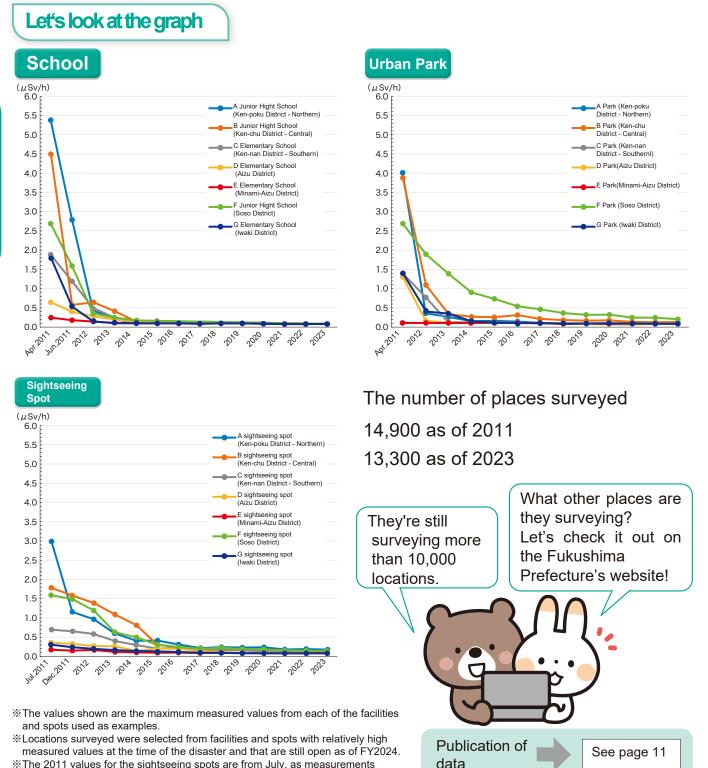
unit: µSv/h

Monthly averages are listed.

*For measurement locations, prefectural north health and welfare office for Fukushima City, and prefectural joint government buildings for other cities. *Decontamination was conducted in Fukushima City and Koriyama City from April to May 2013, Shirakawa City in June 2016, and Minamisoma City in December 2016.

Changes in radiation dose due to weather Air radiation dosage rate at Kaibama Bureau, Minamisoma City

The radiation dose varies depending on the weather. For example, when it rains, naturally occurring radioactive substances in the


atmosphere can fall to the ground, increasing the radiation dose. When snow accumulates, the radiation dose may fall because the radiation from the ground is blocked.

[↑] T he light blue lines indicate the time when it rained. It can be seen that the rain increases the air radiation dosage rate (red line).

Mobile monitoring results using survey meters

Fukushima Prefecture regularly surveys air dose rates at schools, urban parks, tourist spots, and other locations within the prefecture. In the Nakadori and Hamadori regions, the effects of natural attenuation and decontamination of radioactive substances are definitely appearing. The Aizu region has been restored to the air radiation dosage level which existed before the nuclear accident.

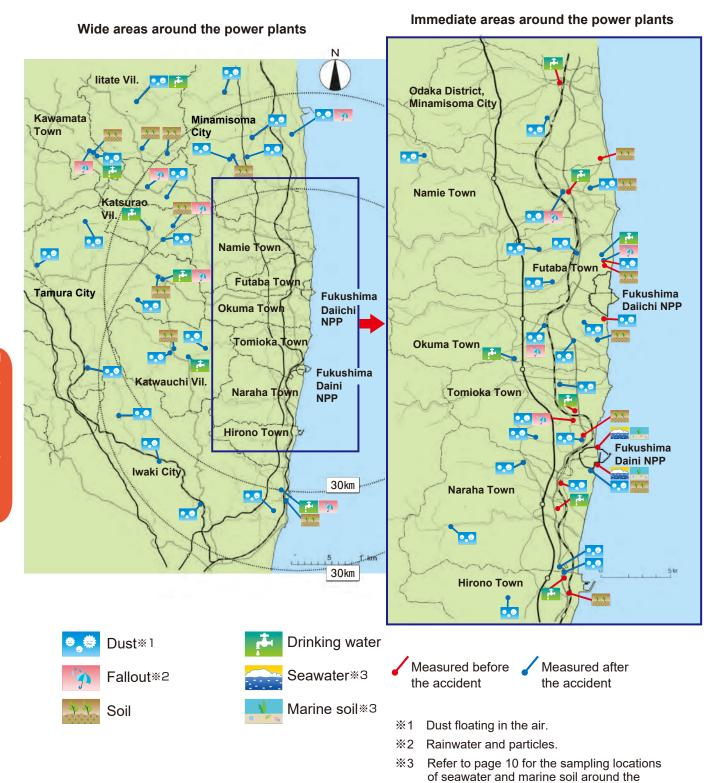
* The 2011 values for the sightseeing spots are from July, as measurements began that month.

*Difficult-to-return Zones are not included in the above measuring points.

Comparison of Air Radiation Dosage rates in Fukushima Prefecture to major cities in the world

The air radiation dosage rate in Fukushima Prefecture (excluding the areas where evacuation was ordered) is now about the same level as that of major cities in the world.

he


Monitoring posts are also installed all over the country.

accident.

Environmental samples in Fukushima

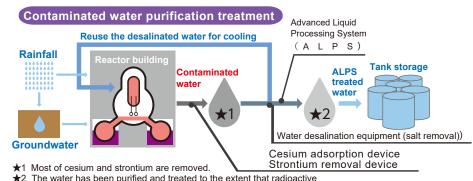
In Fukushima Prefecture, the concentration of radioactive materials is measured in environmental samples, including the air, water, and soil, around the power plant.

Sampling points for environmental samples

Fukushima Daiichi NPP.

Environmental samples in Fukushima

	Tips	on how to read t	ne graph	Cs-13	37				
adioa	activity of env	vironmenta	l sample	S	Ran valu	ge of measure les in 2023	ment	Maximum value	Range of measureme
Types	Radioactive materials detected	Measurem	ent results			Its for 2023	Measurement values from 2020 to 2023	after the accident (Apr., 2011- Mar.,2023)	values before the accident (since 2001
Dust	Unit (mBq/m ³)	0.01 0.1 1	10 100 1,0	00 10,000	Values				
	Cs-134				ND~0.009	Decreased	ND~0.094	1,100	ND
	Cs-137				ND~0.58	Decreased	ND~1.6	990	ND
Rainfall	Unit(mBq/m ² month)	0.1 1 10	100 1,000 10,0	00 100,000			ND 00	5 000 000	
	Cs-134				ND~3.5	Decreased	ND~26	5,000,000	ND
0	Cs-137		-		0.24~160	Decreased	0.38~460	5,600,000	ND~0.1
	Unit (Bq/kg dry)	1 10 100	1,000 10,000 100,	000 1,000,00	D				
	Cs-134				ND~6,300	Decreased	ND~15,000	230,000	ND
	Cs-137				32~320,000	Decreased	20~400,000	400,000	ND~16
Soil	Unit (Bq/kg dry)	1	10 10	0					
**	Sr-90 🛏				ND~40	Decreased	ND~55	81	ND~3.5
	Unit (Bq/kg dry)	0.01	0.1 1]	1	
	Pu-238 🛏				ND~0.05	Same level as before the accident	ND~0.10	0.1	ND~0.0
	Pu-239+240				ND~0.36	Same level as before the	ND~0.40	1.4	ND~0.4
	Unit (Bq/L)	0.1	1 10)		accident			
Tap water	Cs-134				ND	Same level as before the	ND~0.001	0.17	ND
	Cs-137				ND~0.034	accident Decreased	ND~0.043	0.29	ND
			L		ND~0.38	Same level as before the	ND~0.60	0.96	ND~1.2
	Tritium Unit (Bq/L)	0.0001	0.001 0.0)1	110 0.30	accident	140 0.00	0.50	
	Sr-90			-	ND~0.0009	Same level as before the accident	ND~0.0014	0.002	0.001~0.0
	Pu-238	Pu-238 was	not detected.		ND	ND	ND	ND	-
		Du 020 1040 m				Same level as			
	Pu-239+240	0.001 0.01	as not detected		ND	before the accident	ND	ND	ND
	Unit (Bq/L) Cs-134	0.001 0.01	0.1 1		ND~0.003	Decreased	ND~0.010	2.4	ND
	CS-134				110-0.003	Decreased	ND-~0.010	2.4	ND
Seawater	Cs-137 🗕				ND~0.16	Decreased	ND~0.31	5.0	ND~0.00
	Tritium 🛏			-	ND~1.6	Same level as before the accident	ND~1.4	6.2	ND~2.9
	Sr-90				ND~0.012	Decreased	ND~0.035	2.9	ND~0.00
	Unit (mBq/L)	0.01	0.1 1						
	Pu-238				ND	ND	ND	0.010	-
	Pu-239+240				ND~0.018	Remained at the same level	ND~0.019	0.020	ND~0.01
Marine soil.	Unit (Bq/kg dry)	1 10	100 100	00					
	Cs-134				ND~5.2	Decreased	ND~17	450	ND
	Cs-137				21~230	Decreased	20~350	1,000	ND~0.9
	Unit (Bq/kg dry)	0.01 0.1	1 10)					
	Sr-90		-		ND~0.51	Remained at the same level	ND~0.44	4.6	ND
	Pu-238				ND	ND	ND~0.02	0.02	-
						Same level as			


ſ

ND: less than limit of detection

Discharging ALPS treated water into the sea

What is ALPS treated water?

At the Fukushima Daiichi NPP (Units 1-3), water is injected into the reactors to cool the fuel debris that melted and solidified during the accident. This cooling water becomes contaminated with radioactive materials when it comes in contact with the fuel debris. Even more "contaminated water" is produced when it mixes with groundwater or rainwater flowing into the reactor building.

materials other than tritium are below the minimum safety standard.

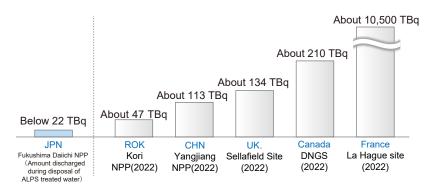
The contaminated water in the buildings is treated to remove cesium and strontium, and some of it is reused to cool the fuel debris in the reactor after the salt is filtered out (desalination). The remaining water is purified using the 'Advanced Liquid Processing System' (ALPS). This 'ALPS treated water,' which has been treated and purified to radiation levels below the minimum safety standards for radioactive materials (other than tritium), is stored in on-site tanks.

Why do we need to dispose of ALPS treated water?

There are over 1,000 giant tanks storing ALPS treated water at the Fukushima Daiichi NPP.

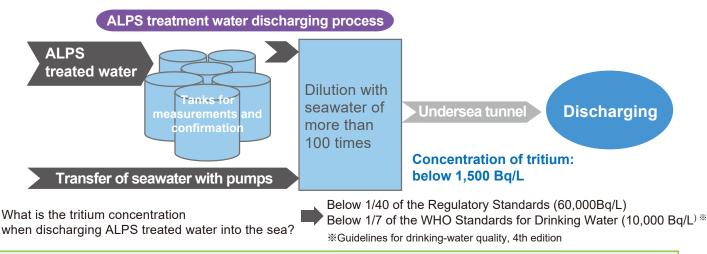
Disposing of the treated water and reducing the number of tanks is essential for decommissioning (shutting down) the plant. It is necessary in order to make room to construct facilities required for the future decommissioning processes. In April 2021, the government decided to discharge ALPS treated water into the sea under a policy created after repeated discussions by experts on the handling of the treated water. The ocean discharge began on August 24, 2023. It was carried out in compliance with safety standards, and is not expected to have any adverse effects on the environment or human health. However, it is very important to take measures to ensure safety by checking the operation status of the discharge facilities and tritium concentrations in ALPS treated water. Careful monitoring of the ocean area must also be done, due to the long period of time involved.

What is tritium?


Tritium is a common form of hydrogen (hydrogen-3), that occurs naturally every day. It can be found in rainwater, tap water, and the human bodies. It is a radioactive material that is broadly present in the natural environment. Tritium exists as a liquid that combines with oxygen and has almost the same properties as water, making it difficult to

separate from water.

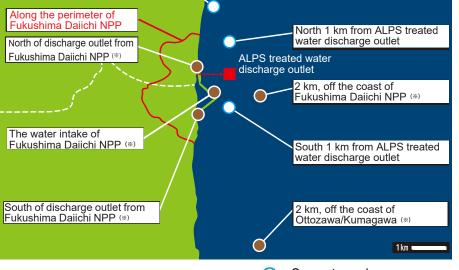
How much is tritium being discharged by each country around the world?


Many nuclear facilities around the world release tritium in compliance with safety standards.

Prepared based on "Let's learn and think about the decommissioning and future of the Fukushima Daiichi NPP!" published by the Agency for Natural Resources and Energy

How high is the tritium concentration that's discharged into the sea?

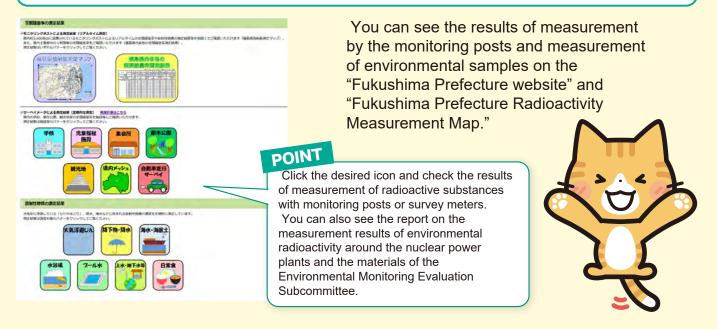
Before discharging, the concentration of tritium is reduced to 1,500 Bq/L, through a dilution of more than 100 times with seawater.


Is discharging into the sea really safe?

Fukushima Prefecture conducts sea area monitoring at nine locations around the Fukushima Daiichi NPP to assess the impact of discharging ALPS treated water into the sea.

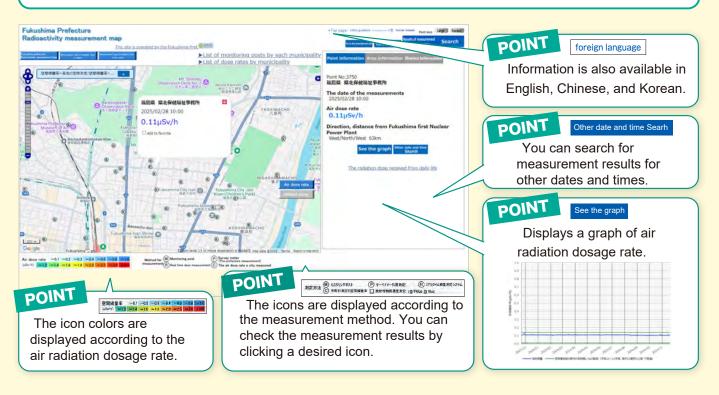
The monthly analysis of tritium in seawater, after the discharge, has consistently remained far below the nation's safety standard and the WHO drinking water standard. Additionally, results for other nuclides, such as radioactive cesium and strontium, have remained within the range of those measured before the discharge (April 2022 to August 2023).

Results of tritium analysis


Measurement points for seawater and seabed soil

(%) Measured before the accident

Fukushima Prefecture website



https://www.pref.fukushima.lg.jp/sec/16025d/

Fukushima Prefecture Radioactivity Measurement Map

http://fukushima-radioactivity.jp/pc/

Edited and published by: Radiation Monitoring Unit, Risk Management Department, Fukushima Prefecture 2-16 Sugitsuma-cho, Fukushima City, Fukushima Prefecture 960-8670 TEL 024-521-8498 / FAX 024-521-8368

Published in March 2025