酸化亜鉛水和剤を組み入れた防除体系によって モモせん孔細菌病の被害を軽減できる

福島農業総合センター 果樹研究所 病害虫科

部門名 果樹 - モモ - 病害虫防除 担当者 日下部翔平、七海隆之、藤田剛輝、小松健太郎

Ⅰ 新技術の解説

1 要旨

モモせん孔細菌病は、有効な薬剤が少ないために防除が難しく、生産現場から防除対策の強化が求められている。そこで、2023年に農薬登録となった酸化亜鉛水和剤(商品名:IC ジンク水和剤)を落花10日後頃と落花30日後頃に組み入れた新規防除体系の効果を検証した結果、慣行防除よりも防除効果が高いことを確認した。

- (1) 本剤を組み入れた新規防除体系(表1)を作成し、「ゆうぞら」を対象として、2022年から 2024年にかけて効果を検証した。
- (2) 慣行防除と比較して、新規防除体系は新梢葉における防除効果が3ヶ年ともに高く(図1)、 果実でも同等~高い防除効果が得られた(図2)。
- (3) 伊達市の現地ほ場において、「紅錦香」を対象とし、本剤を2回組み入れた防除体系(表2) の効果を検証した結果、新梢葉において現地慣行防除よりも高い防除効果が得られた(図3)。
- (4) 本剤の散布による薬害は認められなかった。

2 期待される効果

(1) モモせん孔細菌病の発生が軽減され、高品質果実の安定生産に寄与できる。

3 適用範囲

(1) 県内のモモ生産者

4 普及上の留意点

- (1) 本剤の散布によって果実に白い汚れが生じるため、早生種では散布時期に注意する。
- (2) 葉に薬害が生じる可能性があるため、高温時の散布はさける。
- (3) 訪花昆虫に対して影響があるため、使用時期は落花期以降とする。

Ⅱ 具体的データ等

表1 試験に供試した新規防除体系と慣行防除

散布時期	新規防除体系	慣行防除 (2022年~2023年	慣行防除 F) (2024年)		無散布	<u></u> :
落花直後	アグレプト水和剤 チオノックフロアブル	1,000倍 アグレプト水和剤 500倍 チオノックフロアブル	1,000倍 アグレプト水和剤 500倍 チオノックフロアブル		レプト水和剤 ノックフロアブル	1, 000倍 500倍
落花10日後頃	ICジンク水和剤	1,000倍 バリダシン液剤 5	500倍 クプロシールド クレフノン	1, 000倍 100倍	_	
落花20日後頃	クプロシールド クレフノン	1,000倍 100倍 マイコシールド	2,000倍 マイコシールド	2,000倍	_	
落花30日後頃	ICジンク水和剤	1,000倍 デランフロアブル スターナ水和剤	600倍 1,000倍 デランフロアブル	600倍	-	
落花40日後頃※	マイコシールド ペンコゼブ水和剤	2,000倍 600倍 マイコシールド	2,000倍 マイコシールド	2,000倍	_	

[※]新規防除体系について、2024年の試験では落花40日後頃はペンコゼブ水和剤のみとした。 せん孔細菌病の対象剤のみ記載した。

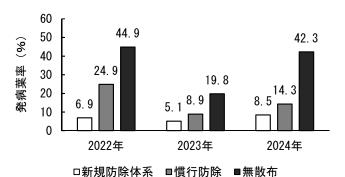


図1 新梢葉における防除効果(2022年~2024年) ※2022年は7月12日、2023年は7月1日、2024年は 6月25日に調査。

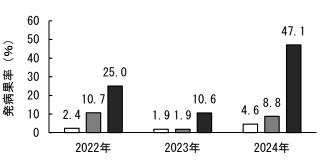


図2 果実における防除効果 (2022 年~2024 年) ※2022 年は8月25日、2023 年は8月23日、2024 年は 8月23日に調査。

□新規防除体系 ■慣行防除 ■無散布

表 2 現地ほ場における散布実績(伊達市、2024年)

散布回	散布日	酸化亜鉛水和剤を組み入れた防除		現地慣行防除				
		散布薬剤	希釈倍数	散布薬剤	希釈倍数			
第1回	3月17日	チオノックフロアブル	500	チオノックフロアブル	500			
第2回	4月5日	ICボルドー66D	50	ICボルドー66D	50			
第3回	4月15日	アグレプト水和剤	1,000	アグレプト水和剤	1,000			
第4回	4月26日	ICジンク水和剤	1,000	クプロシールド	1,000			
第5回	5月10日	マイコシールド	2,000	マイコシールド	2,000			
第6回	5月23日	ICジンク水和剤	1,000	クプロシールド	1,000			
以降は両区ともに現地慣行防除を実施した								

[※]クプロシールドはクレフノン(100倍)を加用した。 モモせん孔細菌病対象薬剤のみ記載した。

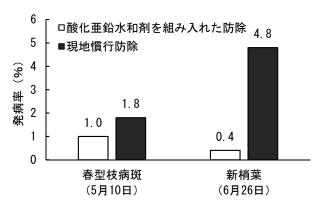


図3 酸化亜鉛水和剤を組み入れた防除体系の効果 (伊達市、2024年)

※括弧内の日付は調査日を示す。

|| その他

1 執筆者

日下部翔平

2 成果を得た課題名

- (1)研究期間 令和3~7年度
- (2) 研究課題名 重要な病害虫に対する防除技術の確立

3 主な参考文献・資料

(1) 七海ら、「酸化亜鉛水和剤はモモせん孔細菌病の防除に有効である」 令和5年度参考となる成果